
ASG-DictionaryManager�

User�s Guide
Version 2.5

Publication Number: DYR0200-25
Publication Date: November 1996

The information contained herein is the confidential and proprietary information of Allen Systems Group, Inc. Unauthorized use of this information and disclosure to
third parties is expressly prohibited. This technical publication may not be reproduced in whole or in part, by any means, without the express written consent of Allen
Systems Group, Inc.

© 1998-2002 Allen Systems Group, Inc. All rights reserved.
All names and products contained herein are the trademarks or registered trademarks of their respective holders.

ASG Worldwide Headquarters Naples Florida USA | asg.com | info@asg.com
1333 Third Avenue South, Naples, Florida 34102 USA Tel: 239.435.2200 Fax: 239.263.3692 Toll Free: 800.932.5536 (USA only)

© 2002 Allen Systems Group, Inc.
All names and products are trademarks or registered trademarks of their respective holders.

ASG Documentation/Product Enhancement Fax Form
Please FAX comments regarding ASG products and/or documentation to (239) 263-3692.

Company Name Telephone Number Site ID Contact name

Product Name/Publication Version # Publication Date

Product:

Publication:

Tape VOLSER:

Enhancement Request:

ASG Support Numbers
ASG provides support throughout the world to resolve questions or problems regarding
installation, operation, or use of our products. We provide all levels of support during normal
business hours and emergency support during non-business hours. To expedite response time,
please follow these procedures.

Please have this information ready:

� Product name, version number, and release number

� List of any fixes currently applied

� Any alphanumeric error codes or messages written precisely or displayed

� A description of the specific steps that immediately preceded the problem

� The severity code (ASG Support uses an escalated severity system to prioritize service to
our clients. The severity codes and their meanings are listed below.)

� Verify whether you received an ASG Service Pack for this product. It may include
information to help you resolve questions regarding installation of this ASG product. The
Service Pack instructions are in a text file on the distribution media included with the
Service Pack.

If You Receive a Voice Mail Message:

1 Follow the instructions to report a production-down or critical problem.

2 Leave a detailed message including your name and phone number. A Support representative
will be paged and will return your call as soon as possible.

3 Please have the information described above ready for when you are contacted by the Support
representative.

Severity Codes and Expected Support Response Times

ASG provides software products that run in a number of third-party vendor environments. Support
for all non-ASG products is the responsibility of the respective vendor. In the event a vendor
discontinues support for a hardware and/or software product, ASG cannot be held responsible for
problems arising from the use of that unsupported version.

Severity Meaning Expected Support Response
Time

1 Production down,
critical situation

Within 30 minutes

2 Major component of product disabled Within 2 hours

3 Problem with the product, but customer has
work-around solution

Within 4 hours

4 "How-to" questions and enhancement
requests

Within 4 hours

Business Hours Support

Non-Business Hours - Emergency Support

Your Location Phone Fax E-mail

United States and
Canada

800.354.3578 239.263.2883 support@asg.com

Australia 61.2.9460.0411 61.2.9460.0280 support.au@asg.com

England 44.1727.736305 44.1727.812018 support.uk@asg.com

France 33.141.028590 33.141.028589 support.fr@asg.com

Germany 49.89.45716.222 49.89.45716.400 support.de@asg.com

Singapore 65.6332.2922 65.6337.7228 support.sg@asg.com

All other countries: 1.239.435.2200 support@asg.com

Your Location Phone Your Location Phone

United States and
Canada

800.354.3578

Asia 65.6332.2922 Japan/Telecom 0041.800.9932.5536

Australia 0011.800.9932.5536 Netherlands 00.800.3354.3578

Denmark 00.800.9932.5536 New Zealand 00.800.9932.5536

France 00.800.3354.3578 Singapore 001.800.3354.3578

Germany 00.800.3354.3578 South Korea 001.800.9932.5536

Hong Kong 001.800.9932.5536 Sweden/Telia 009.800.9932.5536

Ireland 00.800.9932.5536 Switzerland 00.800.9932.5536

Israel/Bezeq 014.800.9932.5536 Thailand 001.800.9932.5536

Japan/IDC 0061.800.9932.5536 United Kingdom 00.800.9932.5536

All other countries 1.239.435.2200

ASG Web Site
Visit http://www.asg.com, ASG�s World Wide Web site.

Submit all product and documentation suggestions to ASG�s product management team at
http://www.asg.com/asp/emailproductsuggestions.asp.

If you do not have access to the web, FAX your suggestions to product management at (239)
263-3692. Please include your name, company, work phone, e-mail ID, and the name of the ASG
product you are using. For documentation suggestions include the publication number located on
the publication�s front cover.

http://www.asg.com/asp/emailproductsuggestions.asp
http://www.asg.com

Contents
Preface v
About this Publication v
Publication Conventions vi

1 Introduction to DictionaryManager 1
Exporting Information 1

Summary 2
Importing Information 3

Data Analysis 5
The Import Procedure 5

2 Translation Rules for Dictionary Members 7
Introduction to Translation Rules 7
How to Define TRANSLATION-RULEs 7

Forming TRANSLATIONRULEs 7
Format Lines and Parameter Numbers 14
Translating Data from a Clause that Does Not Repeat 17
Translating Data from a Clause that Repeats 17
Using Variables 21

An Example TRANSLATION-RULE 31

3 Export to Another Dictionary 33
Introduction 33
How to Translate Members Using the Translation Rules 33

Using the TRANSLATE Command 34
The USING Clause in the TRANSLATE Command 36
Use of KEEP-DATA Lists in the TRANSLATE Command 36

How to TRANSFER Members 36
Keywords PARTITIONED and SEQUENTIAL in the TRANSFER
Command 37
Use of the AS Clause in the TRANSFER Command 38

SET and QUERY TRANSLATION 38
SET and QUERY TRANSLATION for Base Member Types 38
SET and QUERY TRANSLATION for UDS Member Types 39
SET and QUERY TRANSLATION for Cullinet’s IDD 40

4 Import Executive Routines and Variables 43
Extract Executive Routines 43

Introduction 43
i

ASG-DictionaryManager User’s Guide

ii
Storing Extracted Information 43
How to Organize Information on the WBTA 45
Mandatory Variables 46
User-defined Variables 48

Reconcile Executive Routines 50
Introduction 50
Tailoring Common Clauses 51
Mandatory Variables 51

Preview Executive Routines 52
Introduction 52

System-generated Variables 52

5 Format Lines and Parameter Numbers 53
Format Lines and Parameter Numbers Common to All Member Types 53
Format Lines and Parameter Numbers for Basic Member Types 56

For ITEM Members 56
For GROUP Members 58
For FILE Members 59
For MODULE, PROGRAM, and SYSTEM Members 62

Format Lines and Parameter Numbers for ASG-DesignManager
Members 64

6 Syntax of Commands and Member Types 67
TRANSLATION-RULE Member Type 67
EXTRACT Command 70

Extracting from an External File 71
Extracting from the Output of a Command 72
Extracting from a Variable Array 72
Storing Extracted Data in Specified Variable Arrays 72
Specifying a Field Separator 73
Storing Extracted Data in Specified Parts of Variables 73
Extracting Selected Data 74
Null Filling Elements of the Output Array 76
Importing Empty or Blank Records 77
Using an Executive Routine 77
Syntax 77

POPULATE Command 79
Specifying that Statements will form a Logical Unit of Work 79
Syntax 80

PREVIEW IMPORT Command 81
Generating Member Definition Statements in Your Own
Layouts 82
Filing Generated Output in a USER-MEMBER 83
Syntax 83

RADD 84
Syntax (Line Command) 85
Syntax (Primary Command) 85

RECONCILE Command 85
Regenerating Proposed Members 87
Tailoring How Proposed Members are Generated 87

Contents
Stopping Proposed Members being Entered in the Repository 88
Adding Proposed Members 88
Replacing Existing Members with Proposed Members 89
Renaming Proposed Members 89
Selecting Members to be Ignored, Added, or Replaced 90
Excluding Common Clauses from the Definition of Proposed
Members 91
Specifying the Type of Reconciliation Report you want
Displayed 91
A Description of the Reconciliation Summary Report 92
An Example of the Reconciliation Summary Report 93
A Description of the Reconciliation Detailed Report 93
An Example of the Reconciliation Detailed Report 94
Syntax 95

RIGN 96
Syntax (Line Command) 97
Syntax (Primary Command) 97

RREN 97
Syntax (Line Command) 98
Syntax (Primary Command) 98

RREP 98
Syntax (Line Command) 99
Syntax (Primary Command) 99

RUPD 99
Syntax (Line Command) 100
Syntax (Primary Command) 100

TRANSLATE Command 101
TRANSFER Command 102

Appendix A
Importing a COBOL Program 103

Introduction 103
The Extract Stage 103
The Reconcile Stage 104
The Preview Stage 105
The Populate Stage 107
Executive Routine Listings 108

UEXT001 108
UEXT002 110
UEXT003 111
UEXT004 112
UEXT005 113
UEXT006 115
UEXT007 117
UREC001 119
UPRE001 120

The Example External File 122

Appendix B
Importing an Entity-relational Model 131
iii

ASG-DictionaryManager User’s Guide

iv
Introduction 131
The Import File 131

The Enterprise Model 133
The Entities 133
The Partnerships 133
The Partnerships Sets 134
Mapping the Two Models 134

The Extract Stage 134
Introduction 134
Processing Overview 135
Extract Executive Routines 136

The Reconcile Stage 139
Introduction 139
Starting the Reconciliation 140

The Preview Stage 140
Introduction 140
Preview Executive Routines 141

The Populate Stage 142
Introduction 142
Validating the Model 142

Listings of Executive Routines 144
BACHMAN 144
BACHEXT 148
BACHMOD 149
BACHENT 150
BACHREL 151
BACHREC 152
BACHPREV 153
BACHPRMOD 154
BACHPRENT 155
BACHPRREL 156

The Imported Model 157

Index 159

Preface
This ASG-DictionaryManager User’s Guide describes ASG-DictionaryManager (herein called
DictionaryManager). DictionaryManager is the corporate dictionary-driven interchange system
that supports the exchange of definitions between multiple vendor dictionaries and/or directories.

Allen Systems Group, Inc. (ASG) provides professional support to resolve any questions or
concerns regarding the installation or use of any ASG product. Telephone technical support is
available around the world, 24 hours a day, 7 days a week.

ASG welcomes your comments, as a preferred or prospective customer, on this publication or on
any ASG product.

About this Publication

This publication consists of these chapters:

• Chapter 1, "Introduction to DictionaryManager" provides an introduction to
DictionaryManager.

• Chapter 2, "Translation Rules for Dictionary Members" explains translation rules and their
definitions.

• Chapter 3, "Export to Another Dictionary" describes the export engine for User Selected
Dictionary (selectable unit DYR-TE00), which is a prerequisite for any export selectable
units.

• Chapter 4, "Import Executive Routines and Variables" describes the different executive
routines and variables in DictionaryManager.

• Chapter 5, "Format Lines and Parameter Numbers" describes the format lines and parameter
numbers common to all member types as well as those in basic and ASG-DesignManager
member types.

• Chapter 6, "Syntax of Commands and Member Types" explains the syntax used in all
DictionaryManager commands and member types.
v

ASG-DictionaryManager User’s Guide
Publication Conventions
Allen Systems Group, Inc. uses these conventions in technical publications:

These conventions apply to syntax diagrams that appear in this publication. Diagrams are read
from left to right along a continuous line (the "main path"). Keywords and variables appear on,
above, or below the main path.

Convention Represents

ALL CAPITALS Directory, path, file, dataset, member, database, program,
command, and parameter names.

Initial Capitals on Each Word Window, field, field group, check box, button, panel (or
screen), option names, and names of keys. A plus sign (+) is
inserted for key combinations (e.g., Alt+Tab).

lowercase italic
monospace

Information that you provide according to your particular
situation. For example, you would replace filename with
the actual name of the file.

Monospace Characters you must type exactly as they are shown. Code,
JCL, file listings, or command/statement syntax.

Also used for denoting brief examples in a paragraph.

Convention Represents

�� at the beginning of a line indicates the start of a statement.

at the end of a line indicates the end of a statement.

at the end of a line indicates that the statement continues on the line below.

at the beginning of a line indicates that the statement continues from the line
above.

Keywords are in upper-case characters. Keywords and any required punctuation characters or
symbols are highlighted. Permitted truncations are not indicated.

Variables are in lower-case characters.

Statement identifiers appear on the main path of the diagram:

A required keyword appears on the main path:

An optional keyword appears below the main path:

�

�

�

�

� �COMMAND

� �COMMAND KEYWORD

� �� COMMAND
KEYWORD
vi

Preface
Where there is a choice of required keywords, the keywords appear in a vertical list; one of them
is on the main path:

or

Where there is a choice of optional keywords, the keywords appear in a vertical list, below the
main path:

The repeat symbol, <<<<<<, above a keyword or variable, or above a whole clause, indicates that
the keyword, variable, or clause may be specified more than once:

A repeat symbol broken by a comma indicates that if the keyword, variable, or clause is specified
more than once, a comma must separate each instance of the keyword, variable, or clause:

The repeat symbol above a list of keywords (one of which appears on the main path) indicates that
any one or more of the keywords may be specified; at least one must be specified:

The repeat symbol above a list of keywords (all of which are below the main path) indicates that
any one or more of the keywords maybe specified, but they are all optional:

Convention Represents

� �COMMAND
KEYWORD1
KEYWORD2
KEYWORD3
KEYWORD2

� �COMMAND KEYWORD1

KEYWORD3
KEYWORD2

� �COMMAND
KEYWORD1
KEYWORD2

� �
<<<<<<<<

COMMAND variable

� �
<<< , <<
variableCOMMAND

� �

<<<<<<<<<<<<<<<<
COMMAND KEYWORD1

KEYWORD2

� �
<<<<<<<<<<<<<<<<

COMMAND
KEYWORD1
KEYWORD2
vii

ASG-DictionaryManager User’s Guide
viii

1
 1Introduction to DictionaryManager
DictionaryManager enables you to transfer information between different ASG-Manager Products
(herein called Manager Products) dictionaries and between Manager Products dictionaries and
those of other vendors. It consists of a nucleus, an export engine, generic import functions, and
additional selectable units. The selectable unit User Defined Output allows you to define the
content and layout of dictionary reports (see the publication ASG-Manager Products User Defined
Output).

DictionaryManager provides the means for transferring information between your corporate
dictionary and other dictionaries. The DictionaryManager nucleus (selectable unit DYR-DY01) is
an environmental, together with the ASG-ControlManager (herein called ControlManager)
prerequisite nucleus, for other Manager Products.

Exporting Information

With the DictionaryManager nucleus and the corporate dictionary definition export engine for the
User Selected Dictionary (selectable unit DYR-TE00), you can form translation rules and translate
definitions of Manager Products dictionary member types to the format of a dictionary system you
select. You can then transfer the translated definitions to an external file.

Other selectable units are specifically tailored to particular dictionary, such as Cullinet’s IDD.
With the corporate dictionary definition export for IDD (selectable unit DYR-TE08), you can
export to IDD and IDMS using ASG-supplied translation rules.

The fundamental principle of DictionaryManager is to define the rules by which members of a
particular type (such as ITEM) are translated from one dictionary’s format to another.

The rules are held as TRANSLATION-RULE members, so that once set up they can always be
used to translate members of the specified type to the specified target dictionary. ASG provides a
preferred set of TRANSLATION-RULES as part of each selectable unit related to a specific
non-ASG dictionary.

A TRANSLATE command uses the TRANSLATION-RULEs to convert members to source input
statements for the target dictionary and hold them in a USER-MEMBER on the MP-AID.

Another command TRANSFERs the translated members to an external file to be used as source
input statements to the target dictionary.
1

ASG-DictionaryManager User’s Guide
Figure 1. DictionaryManager: Export

Before issuing the first TRANSLATE command in any DictionaryManager session, you may want
to SET the system to select the default TRANSLATION-RULES (either those supplied by ASG or
ones created by you).

Summary
DictionaryManager exportation is structured to be used in this way:

• Define your TRANSLATION-RULEs (unless you are using those provided by ASG).
Define them as members on the Manager Products Administration dictionary, and then
construct them to the MP-AID. You need to redefine them only if the rules change.

• Alternatively, amend (and reconstruct) TRANSLATION-RULEs as required. For example,
you might substitute form-description in VARIABLE clauses and replace
parameter-numbers in USER-EXIT clauses.

• At the beginning of each session in which you will transfer information between
dictionaries, use the SET TRANSLATION command to specify the translation details to be
used, by default, by subsequent TRANSLATE commands. You can query these settings
using the QUERY TRANSLATION command. The SET TRANSLATION command can
be used at any time during the session to change the defaults.

• TRANSLATE members of specific types, as required. The translated source is held on the
MP-AID.
2

1 Introduction to DictionaryManager
• TRANSFER the translated members to an external file, ready for input to the target
dictionary.

• If necessary, prepare your target dictionary to receive member definitions translated from a
Manager Products dictionary, using the target dictionary’s extensibility feature.

Importing Information
Using generic import functions, you can import objects from any system into a
DictionaryManager repository. These functions are provided by the EXTRACT, RECONCILE,
PREVIEW, and POPULATE commands.

You can also use predefined import functions to import information from COBOL and PL/I data
descriptions and from these environments:

• DB2

• SQL/DS

• ADW

• IEW

You can use generic import functions to document any system in your repository. Large program
libraries and database systems such as IMS can be extracted and translated into repository
definitions.
3

ASG-DictionaryManager User’s Guide
Figure 2. DictionaryManager: Import

The main benefits of documenting your systems in the repository are obtained when you use the
repository to automatically generate new systems or new parts of existing systems to design a new
or modified database.

These are the integral parts of generic import functions:

• An import procedure to import objects from an external environment into the repository.
The import procedure consists of four stages: extract, reconcile, preview, and populate.

• The Manager Products Procedures Language which allows you to combine Manager
Products commands with directives that provide standard programming capabilities
(including conditional logic).

• A WorkBench Translation Area (WBTA) in virtual storage on which information can be
stored (in named Procedures Language variables) and then manipulated using the
Procedures Language to suit your purposes.

Refer to "The Import Procedure" on page 5 for details of the import procedure.

Refer to the ASG-Manager Products Dictionary/Repository User’s Guide for details of the
benefits of using a repository.

Refer to Chapter 6, "Syntax of Commands and Member Types," on page 67 for details of the
EXTRACT, RECONCILE, PREVIEW, and POPULATE commands.
4

1 Introduction to DictionaryManager
Refer to the publication ASG-Manager Products Procedures Language for details of the
Procedures Language.

Refer to these publications for details of the predefined import functions:

• ASG-Manager Products Relational Technology Support: DB2

• ASG-Manager Products Relational Technology Support: SQL/DS

• ASG-Manager Products Tools Support: Integration with ADW/IEW

• ASG-DataManager Automation of Set Up

Note:
You need a working knowledge of Manager Products’ Procedures Language in order to develop
generic import functions effectively.

Data Analysis
Before you import external information into a repository, you need to consider what structure the
information will have in the repository. For example, if you are importing a COBOL program, you
may decide that the program will be represented in your repository by a member type called
PROGRAM and that it will have CALLS attributes documenting the external modules it calls.

So, you must decide what you want to store in the repository and what form and structure it will
have in the repository.

How you decide to represent the information in your repository will, in turn, depend on what use
you intend to make of the information. For example, to keep track of which modules a program
calls, you can have CALLS attributes in a PROGRAM member (as described above). If you are
more concerned with which files a program updates, you can extract different information and
represent it appropriately in the repository.

Once you have decided what you want to import to a repository, you must plan to organize the
extracted information on the WBTA in a way that supports the (subsequent) reconcile and preview
stages of the import procedure.

The Import Procedure

Introduction
You can use generic import functions to import objects from an environment that is external to
Manager Products with the four-stage import procedure:

Extract. Read an external file or dataset into the WBTA using the EXTRACT command.

Reconcile. Generate proposed member names and member types from the extracted information,
compare them with the current contents of the Manager Products repository, and make
adjustments as necessary using the RECONCILE command.

Preview. Generate proposed repository definitions and view them using the PREVIEW IMPORT
command.
5

ASG-DictionaryManager User’s Guide
Populate. Populate a repository with the definitions on the WBTA using the POPULATE
command.

Extract, Reconcile, and Preview Executive Routines
Each of the first three stages of the import procedure (extract, reconcile, and preview) must be
supported by either corporate or user executive routines that you write. These are invoked with the
USING keyword in the EXTRACT, RECONCILE, and PREVIEW commands respectively.

Extract executive routines control the way in which extracted information is stored on the WBTA.
The extracted information must be stored in a way that enables the subsequent stages to access the
information they require.

Reconcile executive routines control the way in which information about the extracted objects is
translated into proposed repository member name and member types. The translated information is
displayed in the reconciliation report (produced by the RECONCILE command).

Preview executive routines control the translation of the extracted information into repository
definition statements which may subsequently be added to a repository.

For generic import functions, you should write the routines for a particular application of the
import procedure. For the predefined import functions, ASG provides the routines (some of which
are tailorable). ASG also provides you with extensive examples of such executive routines.

Refer to Appendix A, "Importing a COBOL Program," on page 103 and Appendix B, "Importing
an Entity-relational Model," on page 131 for examples of generic import.
6

2
 2Translation Rules for Dictionary

Members
Introduction to Translation Rules

This chapter explains translation rules and their definitions. The capability to define translation
rules is provided by DictionaryManager’s nucleus (DYR-DY01).

Chapter 3, "Export to Another Dictionary," on page 33 explains how to apply translation rules to
members of a Manager Products dictionary and how to export the translated definitions to another
dictionary system.

DictionaryManager enables you to translate Manager Products dictionary member types such as
ITEM, GROUP, and FILE (and any UDS synonyms) to the format of equivalent member types in
other dictionary systems. This is done in two stages:

• Define TRANSLATION-RULEs for translating each member type from the Manager
Products dictionary to another dictionary

• TRANSLATE members of the Manager Products dictionary, using the rules.

The TRANSLATION-RULEs are held on the MP-AID. You may have a number of different
rules, including the set provided by ASG. A SET TRANSLATION command is used to establish
the default rules to be applied for subsequent TRANSLATE sessions.

How to Define TRANSLATION-RULEs
The process of defining TRANSLATION-RULEs is based on a selection of clauses and attributes.
The process uses a numbering system and several formatting procedures.

Forming TRANSLATIONRULEs
This section explains the system of selection of clauses and parameters. The procedure used
depends on a numbering system and is implemented differently depending on whether the data to
be translated is in a clause that is repeated or not. Formatting is also explained.

The TRANSLATION-RULE member contains the rules for translating dictionary member
definition syntax between a Manager Products dictionary and another target dictionary.
7

ASG-DictionaryManager User’s Guide
The members are developed in the Manager Products Administration dictionary and transferred to
the MP-AID by the Systems Administrator. The rules are then available for use in translating
members from any Manager Products dictionary. (Once it is on the MP-AID, a
TRANSLATION-RULE member can be referred to as a TRUL.)

This is the basic syntax of TRANSLATION-RULE members:

Refer to Chapter 6, "Syntax of Commands and Member Types," on page 67 for the complete
syntax.

The method for defining TRANSLATION-RULEs is based on a clause and attribute selection. It
considers a member definition to be a collection of clauses of information.

There is a numbering system that identifies each clause or attribute of syntax (as it would be
REPORTed using the dictionary management REPORT command), and another for identifying
items of information within each clause. A clause is identified by a format line number. An item of
information within a clause is identified by a parameter number.

However, other dictionary systems will differ from a Manager Products dictionary in the sequence
and content of their clauses of syntax. DictionaryManager overcomes this by:

• Allowing the clauses to be output in any order

• Using special techniques to translate repeating clauses

• Introducing VARIABLES to output parameters only under specific circumstances

If your target dictionary requires further specialized manipulation of these parameters, you can
customize your variables through a TRANSLATE user exit.

For member types which refer to other members with a reference such as a CONTAINS clause
(for example GROUP), a TRANSLATION-RULE can include a clause to TRANSLATE the
contained members. This is so that when the TRANSLATION-RULE is processed by a
TRANSLATE command, the contained members are automatically translated as well.

Formatting characters allow you to control the positions of the translated items of information
within a line when it is output.

Character strings can be included in format lines.

TRANSLATION-RULE FOR MANAGER-DICTIONARY member-type
MP-AID-NAME mp-name

VARIABLE Vm IS clause
USER-EXIT i PASSING arg
translate clause

CONTENTS

format-line
comment-line ...
8

2 Translation Rules for Dictionary Members
Refer to "Formatting Characters and Character Strings" on page 11 for details on formatting
characters and character strings.

The Numbering System Used in TRANSLATION-RULEs
The numbering system is based on the format of a Manager Products dictionary report. Consider
the report for a GROUP named ADDRESS, defined in a Manager Products dictionary as:

GROUP
ALIAS ’DELIV-ADDR’, ’INVCE-ADDR’, ’STMNT-ADDR’ ,COBOL
’ORDER-ADDRESS’
DESCRIPTION ’CUSTOMER ADDRESS IN ORDER PROCESSING SYSTEM’
CATALOG ’SALES’, ’ACCOUNTS’
HELD-AS
CONTAINS NAME

,ADDRESS1
,ADDRESS2
,ADDRESS3
,CODE

;

9

ASG-DictionaryManager User’s Guide
The standard format of the report is:

REPORT OF GROUP ADDRESS

EDITION 2 ENCODED BY JEH AT 11.31.30 ON 15 JAN 1998
STATUS MCS
PROTECTION: NONE

ALIAS
COBOL ORDER-ADDRESS
DELIV-ADDR
INVCE-ADDR
STMNT-ADDR

CATALOGUED AS
SALES
ACCOUNTS

DESCRIPTION
CUSTOMER ADDRESS IN ORDER PROCESSING SYSTEM

THIS MEMBER IS DIRECTLY REFERRED TO 3 TIMES

THIS MEMBER CONTAINS 5 DIRECT REFERENCES

GROUP ADDRESS

FORM HELD-AS

CONTAINS
ITEM NAME
ITEM ADDRESS1
ITEM ADDRESS2
ITEM ADDRESS3
ITEM CODE

Each clause of the report is in a fixed position, and in a fixed format. For example:

DESCRIPTION ’CUSTOMER ADDRESS IN ORDER PROCESSING SYSTEM’

always appears after the ALIAS and CATALOG information, beginning with the keyword
DESCRIPTION, as above. This clause has been allocated a format line number (FM08:), and the
two items within it were allocated the parameter numbers:

D46 (DESCRIPTION)
D47 (CUSTOMER ADDRESS IN ORDER PROCESSING).

The output specified by each format line normally begins on a new physical line and in column
one. You can insert new lines, spaces, and fixed character strings by means of one or more
formatting characters.
10

2 Translation Rules for Dictionary Members
Refer to "Format Lines and Parameter Numbers Common to All Member Types" on page 53 for a
list of the format lines and parameter numbers.

Formatting Characters and Character Strings
Formatting characters allow you to control the positioning of the translated items of information
within an output line.

If you use the FM format lines, parameter numbers, and variables as described, your translated
output will begin on a new physical line, in column one.

If the members of your target dictionary need to be defined with each line beginning in a column
other than one, or have special spacing requirements, you can specify these requirements in your
TRANSLATION-RULE by inserting certain characters, designated as specifiers.

The specifiers, including the parameter numbers, must be separated from each other by commas.
For example:

* ALIAS CLAUSE FORMAT LINES, TO ILLUSTRATE FORMATTING
* CHARACTERS
FM02: C5, D42, X, D43
FM03: C5, D42
- D43.10.R

You can also insert character strings, to build up a complete member definition in the format
required by the target dictionary.

If you want to fit values into specified field widths where the specified field width is not the same
as that of the value to be translated, special procedures are available.

List of Formatting Characters and Their Functions
These are the formatting characters and their functions.

Character Description

* An asterisk begins a comment line, which does not appear in the output. Each
comment line must be contained in one input line, but you can use any number
of consecutive comment lines.

Cnn The output that follows begins in column nn.

nX Causes n spaces to be output.

.mm A number (mm) attached to a parameter number defines a field-width of mm
character spaces for the value output from the parameter number (Dn, Sn, Vn,
or Un).

The period separates the field-width specification from the parameter number.
There must be no spaces between the field-width, its preceding period, and the
parameter number.

If the field contains characters, the output is left justified in the field. If the
field contains integers, they are right justified in the field. Leading or trailing
spaces are included, as described in the note below.
11

ASG-DictionaryManager User’s Guide
These syntax conventions are used in structuring lines.

Character Strings
You can include character strings in format lines, either on a separate format line, or interspersed
with parameter numbers, variables, and other formatting characters. Each character string must be
enclosed in a pair of single quote marks. You can include any printable character, as well as
spaces, within a character string.

If you want to include a single quotation mark as a printable character, then you must include a
pair of quote marks in the text at a suitable point. For example if format line FM04 were:

FM04: ’END OF ’’SYNONYM’’ NAMES’

then the corresponding output would be:

END OF "SYNONYM" NAMES

.R Immediately follows a parameter number or a field-width specification to
right justify the output from the preceding format specifier in the field (D43.
l0.R). The period separates R from the field-width specification with no
intervening spaces, as for mm.

q(s1,s2,...) The output from the specifiers s1,s2,... is repeated q times [for example
2(X,D43)]. If only one specifier is given, the brackets are optional; for
example 4X.

.C Immediately follows a field-width specification to center the translated output
from the preceding parameter number. The period (full stop) separates C from
the field-width specification (with no intervening spaces, as for .mm).

/ A slash character forces a new line in the output.

Character Description

- Whenever a format line carries on to a new line of input the new line must
begin with a hyphen.

, A comma must be included between specifiers, including format parameters,
but not at the beginning or end of a line.

 Spaces may be freely interspersed in the output line specification without
effect on the output.

Character Description
12

2 Translation Rules for Dictionary Members
Example

The CONTENTS clause of a TRANSLATION-RULE member for translating a GROUP might be:

* ADD GROUP ELEMENT USING MANAGER PRODUCTS MEMBER NAME
FM01:C7, ’ADD ELEMENT ’, D23
* USE FIRST THREE MANAGER DICTIONARY ALIASES TO DEFINE
* TARGET DICTIONARY SYNONYMS
FM02: C7, ’ELEMENT NAME SYNONYM IS "’, D43,’"’
FMO3R2: C7, ’ELEMENT NAME SYNONYM IS "’, D43,’"’
* ADD SUBORDINATE ELEMENTS FROM GROUP CONTAINS LIST
FM01: C7, ’SUBORDINATE ELEMENTS ARE’
FM192:
FM192L: C12, D317
- /, Cl7, ’SUB-ELEMENT SYNONYM IS "’ , D321,’"’
FM193: C7, ’-’
FM9999:

This would cause the member for the GROUP ADDRESS, given in the example in the General
Details panel, to be translated as:

ADD ELEMENT ADDRESS
ELEMENT NAME SYNONYM IS "DELIV-ADDR"
ELEMENT NAME SYNONYM IS "INVCE-ADDR"
ELEMENT NAME SYNONYM IS "STMNT-ADDR"
SUBORDINATE ELEMENTS ARE

NAME
ADDRESS1
ADDRESS2
ADDRESS3
CODE

SUB-ELEMENT SYNONYM IS 1 "POSTCODE"

Fitting Values into Specified Field-widths
When a TRANSLATION-RULE is applied, if a field-width (mm) is specified and a value to be
translated in the field is longer or shorter (length N) than that specified by mm, then the following
rules apply. Otherwise, (that is, if mm=N), the parameter value fills the field exactly.
13

ASG-DictionaryManager User’s Guide
For parameters whose values are character strings:

• Where no justification is specified:

— If mm is greater than N, the parameter value is left justified in the specified field, filled
with trailing spaces.

— If mm is less than N, the parameter value is truncated from the right to fill the field
exactly.

• Where right justification is specified (in a type Dm/Um/Vm.mm.R Parameter Number):

— If mm is greater than N, the parameter value is right justified in the specified field, filled
with leading spaces.

— If mm is less than N, the parameter value is truncated from the left to fill the field exactly.

• Where centering is specified (in a type Dm/Um/Vm.mm.C Parameter Number):

— If mm is greater than N, the parameter value is centered in the specified field, filled with
leading and trailing spaces.

— If mm is less than N, the parameter value is centered in the field, truncated at both end
to fill the field exactly.

For parameters that have integer values:

• Right justification is assumed:

— If mm is greater than N, the parameter value is right justified in the specified field, filled
with leading spaces.

— If mm is less than N, the parameter value is filled with asterisks (*) to denote overflow.

Format Lines and Parameter Numbers

Format Lines
The CONTENTS clause of a TRANSLATION-RULE member contains a series of format line
statements. A format line enables you to identify items of information in a member definition of
one dictionary, and reorganize them into the format for definition as a member of another
dictionary. It has the form:

format-line-number output-line-specification

Format line numbers are introduced below. The output-line specification includes parameter
numbers, variables, formatting characters, and character strings.

This is an example of a simple format line:

FM08: C7, D46, 5X, D47

where FM08: is a format line number, D46 and D47 are parameter numbers, and C7 and 5X are
formatting characters.
14

2 Translation Rules for Dictionary Members
The format line number specifies a new clause for output, and identifies the Manager Products
classification of the information it contains. It has the form:

FMn:

where FM identifies a new format line and n identifies the clause or data to be transferred. It must
be in the range 1 through 9999. The colon (:) delimits the end of the format line number.

For example, format line FM02: contains ALIAS information. Format line numbers FM01: and
FM9999: are reserved as special indicators. FM01: outputs system parameters, and FM9999
indicates the end of the TRANSLATION-RULE.

A format line can occupy more than one line in the TRANSLATION-RULE definition. Whenever
a format line carries on to a new line, the new line must begin with a hyphen (-). After translation,
the maximum total length of a line which can be generated by a format line is 132 characters. A
longer generated line will be truncated to 132 characters.

The translated clause can also occupy more than one line. A slash (/) inserted in the format line
will force a new line in your translated output.

The information on a format line or continuation format line will be translated if it contains:

• Text only

• Parameter numbers or variables, of which at least one has a value that is not NULL

If it contains only NULL valued parameter numbers or variables, output of any text fields (such as
ALIAS IS) in that clause is suppressed.

An FNn: format line indicates a skip to a new line. Use the form FNn: to cause the parameters to
be treated as part of the preceding FNn: line (without skipping to a new line).

These restrictions apply to the use of FN lines:

• The first format line in the CONTENTS clause of a TRANSLATION-RULE cannot be an
FN line.

• An FN line cannot be specified for a repeating format line; multiple values of the same
parameter may not appear on the same physical output line. In terms of the groups of three
format numbers, FNn+1:... is invalid. A specification which refers to only one occurrence of
of repeating information is valid (FNn:... and FNn+1L:... are valid).

• An FN line cannot follow a processing loop. In terms of the groups of three format numbers,
an FN... line may not immediately follow an FNn+2:... line or an FMn+2 line.

Parameter Numbers and Format Lines
In order to identify the various components of a given dictionary member, each standard attribute
has been assigned a parameter number. Parameter numbers have the form Dn or Un , where n is
an integer which identifies the parameter. For example, the ALIAS attribute is given the parameter
D43.
15

ASG-DictionaryManager User’s Guide
The D parameters represent standard attributes and clauses of member definitions, while U
parameters represent user-defined attributes (defined by the User Defined Syntax facility,
selectable unit CMR-UD1). The format line and parameter numbers for user-defined attributes are
documented in the hierarchy member from which the UDS table was generated.

The format line number selects the clause from which information is to be extracted, while the
parameter numbers select the data and keywords from the clause. As a result, most parameter
numbers are associated with a particular format line.

For example, the format lines and parameter numbers are allocated to a sample ALIAS definition
as follows:

FM02: D41 D42 D43.........
ALIAS COBOL ORDER-ADDRESS

However, parameter numbers D1 through D40 may be used on any format line. For example, the
parameter number D23, which gives the name of the member being translated, could be placed on
format line FM01:, FM08:, or any other line.

If global or local variables are set using User Defined Commands (selectable unit CMR-UD05),
then certain of these variables are available for use. Parameter numbers D8 through D20 are
reserved for use as global and local variables. D8 through D17 correspond to global variables G0
through G9. D18, D19, and D20 correspond to local variables L0, L1, and L2.

Refer to "Format Lines and Parameter Numbers Common to All Member Types" on page 53 for
the list of format lines and parameter numbers, and to the publication ASG-Manager Products
User Defined Syntax.

Format Line Grouping
Format lines are generally grouped in threes. For example, format line numbers FM02:, FM03:,
and FM04: all output the ALIAS clause.

The three format lines have these purposes:

• The first line (FMn) translates the first occurrence of the data contained in the clause. For
example, a format line number FM02: would translate the first ALIAS entry, such as:

ALIAS ’DELIV-ADDR’

• The second line (FMn+1) controls translation of the subsequent occurrences of the data in
the clause. For example, format line number FM03: would translate any additional ALIAS
entries, such as:

,’INVCE-ADDR’, ’STMNT-ADDR’

• The third line (FMn+2) allows a terminating line to be included at the end of the translated
clause. It contains no data from the clause, but it may contain parameters which are
generally available or trailing information.

For example, consider a GROUP member named ADDRESS which contains:

ALIAS ’DELIV-ADDR’, ’INVCE-’, ’STMNT-ADDR’
16

2 Translation Rules for Dictionary Members
If the format lines below are included in the TRANSLATION-RULE member, then all the
ALIASes would be translated, followed by the semi-colon as a terminator.

FMO2: (other specifiers)
FM03: (other specifiers)
FM04: ’:’

The format line groups FM59:, FM60: and FM61:, and FM19l:, FM192:, and FM 193: are special
cases. FM59: and FM19l: contain heading information and general parameters only and do not
refer to the first occurrence of data in the clause referenced by the format line. All such data is
controlled by format lines FM60: and FM192:.

Translating Data from a Clause that Does Not Repeat
Clauses are treated according to whether the data corresponding to the format lines may repeat or
not.

Format lines may be specified in any order. They will be processed in the order in which they are
encountered. You can use them in their group of three, or independently of it. You can also follow
a format line from one group with those from other groups, and repeat format lines.

For example, if the target dictionary format requires a member definition to begin with one line of
DESCRIPTION, followed by all the ALIASes and no terminator, you could use the sequence:

FM08:
FM02:
FM03:

For simple, non-repeating information, only the first format line should be used.

Translating Data from a Clause that Repeats

Introduction
Format lines may be specified in any order. They will be processed in the order in which they are
encountered. You can use them in their group of three, or independently of it. You can also follow
a format line from one group with those from other groups, and repeat format lines.

For example, if the target dictionary format requires a member definition to begin with one line of
DESCRIPTION, followed by all the ALIASes and no terminator, you could use the sequence:

FM08:
FM02:
FM03:

When information is repeated in a main clause, such as in the ALIAS example, the first format line
specifies the first occurrence of the repeating information, and the second format line specifies all
subsequent occurrences.
17

ASG-DictionaryManager User’s Guide
However, some clauses are subsidiary to a main clause. For example, if the CONTAINS clause of
a GROUP member held these repeating lines of an address, the IF clause is a subsidiary clause:

,ADDRESS1
,ADDRESS2
,ADDRESS3
,POSTCODE ELSE ZIP IF ADDRESS3 EQ ’USA’

To ensure that all occurrences of a subsidiary clause are processed, it is necessary to set up a
procedure to repeat the translation on each occurrence of the subsidiary clause. You can do this
with a processing loop.

Controlling Translation of Items of Data after the First Occurrence
Consider a GROUP member named ADDRESS that contains:

DESCRIPTION ’DESCRIPTION LINE ONE’
’DESCRIPTION LINE TWO’
’DESCRIPTION LINE THREE’

These format lines translate all the DESCRIPTION lines:

FM08 : (other specifiers)
FM09 : (other specifiers)
FM010: ’;’

In this example, you could translate only the DESCRIPTION LINE ONE and the terminator by
omitting the second line:

FM09 : (other specifiers)

Alternatively, you could translate only up to DESCRIPTION LINE TWO by adding a repeat
count, Ri , to the format line number of the second line in the group (FM09R1). This ensures that
only one DESCRIPTION LINE after the first is translated.

The format of the Repeat Count is Rr , where r is the number of occurrences in the clause or data
that are to be translated.

If a format line number FM03R3: is used, the lines output would include the second, third, and
fourth DESCRIPTION entries, assuming they were specified in the definition of a dictionary
member. Fifth or subsequent DESCRIPTION entries would be omitted.

There are other special procedures available for translating clauses.

Processing Loops
Processing loops provide a mechanism for handling repeating information. They must be used
when information from other format lines is to be interspersed with information from a repeating
clause.
18

2 Translation Rules for Dictionary Members
You can repeat a process for each occurrence of the contained member within a GROUP by means
of this processing loop:

FN192:
FM192L: ’ADD ELEMENT ’, D317
- ’ELEMENT NAME SYNONYM IS ’, D321
FM193:

If you applied that processing loop to a Manager Products GROUP member containing the items:

NAME
ADDR
PHON KNOWN-AS TEL

this would be the output:

ADD ELEMENT NAME
ADD ELEMENT ADDR
ADD ELEMENT PHON ELEMENT NAME SYNONYM IS TEL

The beginning of a processing loop is identified by an FMR+1 format line with no specifiers
(FM192:). The format line identified by FM192L: (FMn+1L) contains the specification of what
must be translated for each occurrence of the repeating information. The end of the processing
loop is indicated by a normal FMn+2 format line.

In the example above, for each occurrence of a member in the GROUP’s CONTAINS clause (that
is each occurrence of FM192:), a new ADD ELEMENT statement is generated. If the member has
a corresponding KNOWN-AS clause, a SYNONYM clause is generated within the ELEMENT
definition.

FM193: identifies the end of the processing loop and control will return to the immediately
preceding FM192: (no L) until all occurrences of FM192: are processed. Any output specification
included in line FM193: is processed after all occurrences of FM192:.

Interspersing Information from Other Format Lines with Information from a Repeating Clause
In the example below the processing loop will output an ADD ELEMENT statement for each
form/version of an ITEM, each with the first four ALIASes of the member.

FM60:
FM60L: ’ADD ELEMENT’, X, D23, X, ’VERSION’, X, D112
FM02: ’SYNONYMS ARE’, X, D43
FM03R3: C3, D43
FM61: ’-’
19

ASG-DictionaryManager User’s Guide
Processing loops may be nested. An inner loop will repeat for each occurrence of repeating
information which occurs within a single occurrence of the section defined by the outer loop. For
example:

FM60:
FM60L: ’ADD ELEMENT’, X, D23, X, ’VERSION’, X, D112
FM465:
FM465L: D157, X, ’MAY BE’, X, D158
FM466:
FM61: ’-’

This will define a new ELEMENT on the target dictionary for each form/version, with the
FORMAT specifications of the subsidiary CONTENTS and ELSE clauses that are within the
current occurrence of the form/version.

Note:
It is recommended that you only use nesting of processing loops to correspond to subsidiary
clauses which naturally repeat within the main format lines.

Refer to "Translating Data from a Clause that Repeats" on page 17 for a description of translating
a clause that repeats.

Concatenating Clauses from Different Format Lines
The target dictionary may require a line of a member definition to be made up of part of one line of
an ASG member definition, and part of another line (of the same ASG member definition).

For example, you might want an output line containing the PICTURE clause from an ITEM
member definition, followed by the RANGE clause. The PICTURE clause is specified by: FM59:
D133, D134, and the RANGE clause is specified by FM467: D153, D609, D610, D611.

If you specify a format line beginning FN after an FM format line, the output line will begin with
the parameters specified in the FM format line. The parameters specified in the FN format line will
be concatenated onto the end of the output line. For example:

FM59: C5, D133, X, D134
FN467: X, D153, X, D609, X, D610, X, D611

will cause the output of:

PICTURE ’picture-string’ RANGE lower-limit TO upper-limit

You can specify more than one FN format line following an FM format line.
20

2 Translation Rules for Dictionary Members
Using Variables

How Variables are Used
Variables allow you to vary the allocation and/or content of items of information within format
lines. For example, members of the Manager Products type GROUP may have a FORM of
ENTERED-AS, HELD-AS, REPORTED-AS, and/or DEFAULTED-AS. The parameter number
for FORM is D301.

Suppose you are translating to a target dictionary whose equivalent terms for these are INPUT,
FILED, OUTPUT, and DEFAULT respectively.

You can ensure that these variations are translated correctly by placing the following statement in
your TRANSLATION-RULE, before the CONTENTS section:

VARIABLE V1 IS ’INPUT’ IF D301 EQ ’ENTERED-AS’
ELSE ’FILED’ IF D301 EQ ’HELD-AS’
ELSE ’OUTPUT’ IF D301 EQ ’REPORTED-AS’
ELSE ’DEFAULT’ IF D301 EQ ’DEFAULTED-AS’

and then, in your CONTENTS section, a format line for the Manager Products dictionary FORM
clause:

FM185: V1

If there is no match, the variable is set to null.

A variable is defined only in terms of the current TRANSLATION-RULE. Its value, once set,
remains unchanged until it is reset by reprocessing the format line containing that variable, or
processing another format line containing that variable.

Referenced members can be translated automatically using variables.

Example of Using Variables
A target dictionary may not have facilities to cope with the KNOWN-AS clause. It may be
necessary to put commands in a TRANSLATION-RULE member for a GROUP to define the
CONTAINed members KNOWN-AS names, if specified, as an alias or synonym on the target
dictionary.

In this case, the variable definition might be this:

VARIABLE V2 IS D317 IF D321 NE NULL
VARIABLE V3 IS D23 IF D321 NE NULL

where parameter numbers are assigned like this:

D23 Member name in any format line (the GROUP name here)
21

ASG-DictionaryManager User’s Guide
Commands to define members on the target dictionary might be put in format lines in the
CONTENTS section, to operate on the variables:

FM192: ’MODIFY ELEMENT ’, V2
- /,’INCLUDE ELEMENT NAME SYNONYM ’,D321,’FOR GROUP ’,V3, ’.’

Special Processing with the User Exit
The user exit provides a mechanism for special processing not handled by the
TRANSLATION-RULE processing. For example, you can multiply two parameters together.

The user exit processing is invoked by declaring a variable clause with this format:

VARIABLE Vm USER-EXIT user-exit-no (PASSING parameter-numbers)

When Vm is encountered within a format line, the user exit module MPDX1 is called, passing the
user exit number and parameters. The user exit module returns the value of Vm.

A maximum of fifteen parameters can be passed to the user exit module along with the user exit
number. This information is passed in the format of an IDCB control block.

The user exit processing can set a return code to indicate either that the TRANSLATION-RULE
processing should continue upon return from the user exit and a warning message should be output
before continuing, or that an error message should be output and the translation terminated.

The ASG-supplied code for MPDX1 contains coding specific to the translation of a Manager
Products ITEM PICTURE into an IDD picture. You can amend the source of the module to either
add your own functions or to modify the supplied code to your own needs.

D317 Member name in the CONTAINS clause

D318 Version number in the CONTAINS clause

D318 Version number in the CONTAINS clause

Defining Your Own Functions for the User Exit

Field Contents ASG Name Decimal
Offset

Form
Description

Length
Bytes

Values Remarks
(below)

Address of user work
core (60 bytes)

IDCBWKAD 0 A 4 1

Calling modules
register 13

IDCBR13 4 F 4 2

Number of passed
parameters

IDCBPMNO 8 H 2 3

Length of work area IDCBWKLN 10 H 2 X'3C' 4

Function code from
calling module

IDCBFUNC 12 C 2 C'00'
through
C'99'

5

22

2 Translation Rules for Dictionary Members
Return code to
calling module

IDCBRETN 13 X I X'0'
X'4'
X'8'

6

Address answer IDX IDCBANSW 16 F 4 7

Address of
parameter 1

IDCBPR01 20 F 4 8

Address of
parameter 2

IDCBPR02 24 F 4 8

Address of
parameter 3

IDCBPR03 28 F 4 8

Address of
parameter 4

IDCBPR04 32 F 4 8

Address of
parameter 5

IDCBPR05 36 F 4 8

Address of
parameter 6

IDCBPR06 40 F 4 8

Address of
parameter 7

IDCBPR07 44 F 4 8

Address of
parameter 8

IDCBPR08 48 F 4 8

Address of
parameter 9

IDCBPR09 52 F 4 8

Address of
parameter 10

IDCBPR10 56 F 4 8

Address of
parameter 11

IDCBPR11 60 F 4 8

Address of
parameter 12

IDCBPR12 64 F 4 8

Address of
parameter 13

IDCBPR13 68 F 4 8

Address of
parameter 14

IDCBPR14 72 F 4 8

Address of
parameter 15

IDCBPR15 76 F 4 8

Defining Your Own Functions for the User Exit

Field Contents ASG Name Decimal
Offset

Form
Description

Length
Bytes

Values Remarks
(below)
23

ASG-DictionaryManager User’s Guide
Automatic Translation of Referenced Members
If you are defining a TRANSLATION-RULE for a member type such as GROUP which
references other members, you can arrange for them to be translated automatically when the
member type you are defining is translated. In this way, you do not have to translate each
contained member in one or more separate processes, and you may nest output from referenced
members inside a referring member.

To do this, an alternative format for the VARIABLE clause is provided:

VARIABLE Vm TRANSLATE arg USING mp-tr-rule
[PASSING arg [, arg]...]
[clause-2]

where clause-2 is:

where value is:

arg is:

where:

Dm parameters represent standard attributes and clauses of member definitions.

Um parameters represent user-defined attributes (defined by using the User Defined Syntax
facility).

Sm refers to a positional argument passed to this TRANSLATION-RULE from a
VARIABLE Vm translate-clause.

mp-tr-rule is the name of a TRANSLATION-RULE member on the MP-AID.

Only the global parameters and the parameters available to the format line on which the variable
appears are available to the clause.

[IF arg
Vm

EQ
NE
GT
LT
GE
LE

value [AND value]...]arg
Vm

EQ
NE
GT
LT
GE
LE

Dm
Um
Sm
'string'
NULL

Dm
Um
Sm
24

2 Translation Rules for Dictionary Members
A translate type variable must be specified on a new format line.

The TRANSLATION-RULE for the subordinate members must specify parameter numbers in the
form Sm to receive the parameters passed. The parameter numbers will be received in the order in
which they are passed. For example, processing a format line which contains V1, which is defined
as:

VARIABLE V1 TRANSLATE D914 USING TRIT1 PASSING D915, D916

will cause automatic translation of the item whose name appears in parameter D914, using
TRANSLATION-RULE TRIT1.

TRIT1 might, in turn, specify a variable V1:

VARIABLE V1 IS D125 IF D110 EQ S1 AND D112 EQ S2

S1 and S2 will receive the passed parameters D915 and D916 respectively.

D914 represents the value of an IDMS-SUBSCHEMA buffer size.

D915 represents the word RESERVE.

D916 represents the value of the number of areas to be reserved.

D125 represents the minimum number of digits in an integer.

D110 represents a form specification.

If you refer to a secondary parameter for which a value is not received, for example, S5 when only
three parameters have been passed, a question mark (?) is output in its place.

Refer to "How Variables are Used" on page 21 for the introduction to using variables.

Example: Translation Rule for Hierarchical Structures
An entire data structure can be translated using one TRANSLATE command as shown in the
example below.

The GROUP DMRGROUP contains the ITEMS DMRITEM, DMRITEMA, and DMRITEM1.

This translate command is issued:

TRANSLATE MANAGER-DICTIONARY MEMBER DMRGROUP
TO OTHER-DICTIONARY
ONTO PUBLIC MPTEMP USING TRGROUP PRINT;

In TRANSLATION-RULE TRGROUP (MP-AID name TRGROUP); the following variable
statement is specified giving the tr-rule and the parameter (Dn, Sn, or Un), whose value is the
name of the contained or referenced member to be translated:

VARIABLE V1 TRANSLATE D317 USING SUB-TRANS PASSING D22, D23 IF D316
EQ ’ITEM’
25

ASG-DictionaryManager User’s Guide
where D317 is the name of a member contained by the group.

SUB-TRANS is the MP-AID name of the translation-rule to be used to translate the contained
member. D22 and D23 are secondary parameters passed to the nested translation. D316 is the
contained member’s type.

This nested translate facility then processes the specified member, using the specified tr-rule, to
generate input for the specified dictionary.
26

2 Translation Rules for Dictionary Members
The nested translate facility also allows the current tr-rule to be used recursively to translate any
referenced/contained members of the same type.

PRINT OF DMRGROUP
GROUP
ALIAS COBOL ’COBOL-ALIAS-1’
CONTAINS

(2) DMRITEM
(DMRITEM) DMRITEMA,

DMRITEM1
(19) DMRITEN2

NOTE ’THE USE OF NAME AND LITERAL BOUND OCCURS’
’DMRGROUP NOTE STRING 1’

PRINT OF DMRITEM
ITEM
HELD-AS 1 NUMERIC-CHARACTER 3
ALIAS COBOL "ITENCOBALl"
NOTE ’DMRITEM NOTE STRING 1’

PRINT OF DMRITEMA
ITEM
ENTERED-AS 1 PACKED-DECIMAL
SIGNED 10.1
ALIAS COBOL ’DMRITEMA-COBOL-ALIAS-1'
NOTE ’DMRITEMA NOTE STRING 1’

PRINT OF DMRITEM1
ITEM ENTER 1 ALPHA 3
ALIAS COB "COB-DMRITEM"
NOTE ’DMRITEM1 NOTE STRING 1’

PRINT OF TRANSLATION-RULE TRGROUP
TRANSLATION-RULE
FOR MANAGER-DICTIONARY GROUP
MP-AID-NAME TRGROUP
VARIABLE V1 IS ’ELEMENT’ IF D316 EQ ’ITEM’

ELSE ’STRUCTURE’ IF D316 EQ ’GROUP’
ELSE ’UNIT’

VARIABLE V2 TRANSLATE D317 USING SUB-TRANS PASSING D22, D23
IF 0316 EQ ’ITEM’

VARIABLE V3 TRANSLATE D317 USING TRGROUP PASSING D22, D23
IF D316 EQ ’GROUP’

NOTE ’THE NESTED TRANSLATE VARIABLE STATEMENTS WHICH WHEN’
’RESOLVED WILL TRANSLATE THE CONTAINED MEMBER (D317),’
’USING TR-RULE TRITEM or TRGROUP, PASSING THE GROUPS TYPE’
’(D22) AND NAME (D23) AS SECONDARY PARAMETERS’

VARIABLE V4 IS ’NAME’ IF 0657 NE NULL
ELSE ’CONSTANT’ IF 0655 NE NULL
27

ASG-DictionaryManager User’s Guide
NOTE ’TYPE OF OCCURS BOUND VALUE’
VARIABLE V5 IS D656 IF D657 NE NULL

ELSE D654 IF 0655 NE NULL
NOTE ’PICK EITHER THE NAME OR THE LITERAL OCCURS BOUND VALUE’
CONTENTS
FM01 : C15, ’CREATE STRUCTURE ’, D23, ’-’
*
* OTHER-DICTIONARY VERSION OF ADD/REPLACE
*
* OUTPUT ALIASES.
* USE NOSKIP (FN04) TO OUTPUT ’-’ AFTER ALL ALIASES
FM03 :
FM03L : C20, ’ SYNONYM IS ’, D43
*
* OTHER-DICTIONARY VERSION OF ALIAS
*
FN04 : ’-’
* OUTPUT MEMBER-NOTES USING DMR NOTE CLAUSE
*
FM11 : C2O, ’MEMBER-NOTES "’, D49, ’"’
FM12 : C34, ’"’, D49, "’"
FN13 : ’-’
*
* PROCESSING LOOP TO OUTPUT SUB-MEMBER CLAUSES USING
* DMR CONTAINS CLAUSE*
FM192:
FM192L: C2O, ’SUB-MEMBER TYPE ’, V1, ’ IS ’, D317

- /, C25, ’OCCURENCE IS ’, V4, ’ BOUND ’, V5*
*
* OTHER-DICTIONARY VERSION OF CONTAINS MEMBER
*
* END FIRST LOOP. FMN+2 (FM193)
* WILL CAUSE LOOP BACK TO FMN+1 (FM192)
FM193:
FM01 : C15, ’STRUCTURE END.’
FM192:
*
* TRANSLATE CONTAINED MEMBERS USING NESTED TRANSLATE FEATURE
*
FM192L: /, V2, V3
* THIS IS THE POINT AT WHICH THE CONTAINED MEMBERS ARE
* TRANSLATED USING THE NESTED TRANSLATE FEATURE. THE GENERATED
* LINES FOR THE CONTENTS WILL APPEAR IMMEDIATELY FOLLOWING
* ’STRUCTURE END’
FM193:
FM9999:

PRINT OF TRANSLATION-RULE TRITEM
TRANSLATION-RULE
FOR MANAGER-DICTIONARY ITEM
MP-AID-NAME SUB-TRANS
28

2 Translation Rules for Dictionary Members
VARIABLE V1 IS ’ELEMENT’ IF D22 EQ ’ITEM’
ELSE ’STRUCTURE’ IF D22 EQ ’GROUP’
ELSE ’UNIT’

VARIABLE V2 IS ’STANDARD-’ IF D42 EQ NULL ELSE D42
VARIABLE V3 IS D43 IF D42 EQ NULL
VARIABLE V4 IS ’ELEMENT’ IF S1 EQ ’ITEM’

ELSE ’STRUCTURE’ IF S1 EQ ’GROUP’
ELSE ’UNIT’

CONTENTS
*
* CREATE ELEMENTS USING DMR MEMBER-TYPE AND VERSIONS
FM01: /, C30, ’CREATE SUB-MEMBER ’,V1 , X, D23,’.’
*
* IDENTIFY VERSION/USAGE DETAILS USING FM6O PROCESSING LOOP

*
FM60R1: C35, ’PRIMARY MODE-VERSION IS ’,D1l0, X, D112, ’-’
*
* NOTE USE OF REPEAT COUNT R1

- /, C35, ’ELEMENT-USAGE STRING "’, D118, ’"’
FM61:
*
* IDENTIFY MASTER (CONTAINING), MEMBER USING PASSED PARAMETERS
*
FM01 : C35, ’MASTER-MEMBER TYPE ’, V4, ’ IS ’ , S2, ’-’
*
* NOTE USE OF PASSED PARAMETER S2. CALLING GROUP’S NAME
* OUTPUT MEMBER-NOTES USING DMR NOTE CLAUSE
*
FN11 : C35, ’MEMBER-NOTES "’, D49, ’"’
FM12 : C49, ’"’, D49, ’"’
FN13 : ’-’
*
* OUTPUT ALIASES. USE NOSKIP TO OUTPUT ’.’ AFTER ALL ALIASES
*
FM03:
FM03L: C35, V2, V3, ’ SYNONYM IS ’, D43
FN04: ’-"
*
FM01: C30, ’SUB-MEMBER END.’
FM9999:
29

ASG-DictionaryManager User’s Guide
EXAMPLE OUTPUT FROM TR-RULE TRGROUP

CREATE STRUCTURE DMRGROUP.
COBOL SYNONYM IS COBOL-ALIAS-1
MEMBER-NOTES "DMRGROUP NOTE STRING 1"
SUB-MEMBER TYPE ELEMENT IS DMRITEM
OCCURENCE IS CONSTANT BOUND 2
.
SUB-MEMBER TYPE ELEMENT IS DMRITEMA

OCCURENCE IS NAME BOUND DMRITEM1
.
SUB-MEMBER TYPE ELEMENT IS DMRITEM1
.
SUB-MEMBER TYPE ELEMENT IS DMRITEM2

OCCURENCE IS CONSTANT BOUND 19
.

STRUCTURE END.

EXAMPLE OUTPUT FROM TR-RULE TRITEM

CREATE SUB-MEMBER ELEMENT DMRITEM.
PRIMARY MODE-VERSION IS HELD-AS 1.
MASTER-MEMBER TYPE STRUCTURE IS DMRGROUP
MEMBER-NOTES "DMRITEM NOTE STRING 1"

"DMRITEM NOTE STRING 2".
COBOL SYNONYM IS ITEMCOBAL1.

SUB-MEMBER END.

CREATE SUB-MEMBER ELEMENT DMRITEMA.
PRIMARY MODE-VERSION IS ENTERED-AS 1.
MASTER-MEMBER TYPE STRUCTURE IS DMRGROUP.
MEMBER-NOTES "DMRITEMA NOTE STRING 1"
COBOL SYNONYM IS DMRITEMA-COBOL-ALIAS-1.

SUB-MEMBER END.

CREATE SUB-MEMBER ELEMENT DMRITEM1.
PRIMARY MODE-VERSION IS ENTERED-AS 1.
MASTER-MEMBER TYPE STRUCTURE IS DMRGROUP.
MEMBER-NOTES "DMRITEM1 NOTE STRING 1"
COBOL SYNONYM IS COB-DMRITEM.

SUB-MEMBER END.
30

2 Translation Rules for Dictionary Members
An Example TRANSLATION-RULE
This example TRANSLATION-RULE translates an ITEM member type to an ITEM member
type. This type of translation, with some adjustments, may be useful when moving members
between Manager Products dictionaries (where these dictionaries have some different conventions
or requirements).

TRANSLATION-RULE
FOR MANAGER-DICTIONARY ITEM
DESCRIPTION

’EXAMPLE DYR TRANSLATION-RULE TO TRANSLATE’
’MPR PRIMARY DICTIONARY ITEMS. FOR INPUT TO’
’MPR SECONDARY DICTIONARY’

MP-AID-NAME DYRITEM
VARIABLE V1 IS ’ADD’ IF D6 EQ ’STATUS1’

ELSE ’MODIFY’ IF D6 EQ ’STATUS2’
ELSE ’REPLACE’

VARIABLE V2 IS ’DICT2-’
VARIABLE V3 IS ’NO MEMBERS’ IF S1 EQ NULL

ELSE S1
VARIABLE V4 IS ’0’ IF D128 EQ NULL AND 0129 EQ NULL

AND D124 NE NULL
CONTENTS
* GENERATE ADDIREPLACEIMODIFY
*
FM01: Cl, V1, X, V2, D23, X, ’;’
FM01: C2, D22
*
* GENERATE NOTE CLAUSES. FIRST NOTE STRING =
CONTAINING MEMBER TYPE + IF PASSED
* NAME OF CONTAINING MEMBER
FM11: C6, D48, X, ’"CONTAINED BY ’, V3, X, S1, ’"’
FM12: C2, ’"’, D49, ’"’
*
* GENERATE FORM/VERSION
*
FM60:
FM60L: C3, D110, X D112, X, D124
- /, C3, D117, X, D118, X, D120, X, D122, X, D119, X, D121
- /, C3, D123, X, D125, D126, D127, X, D128, D129, X, V4
- /, C3, D130, X, D131, X, D132
- /, C3, D133, X, D134, X, D135, X, D136, X, D137, X, D138
*
* GENERATE CONTENTS/CONDITION/RANGE-IS
*
FM465:
FM465L: C4, D150, X, D152
- / , C4, D155, X, D156
FM468:
FM468L: C5, D153, X, D609, X, D610, X, D611
FM469:
31

ASG-DictionaryManager User’s Guide
*
FM471:
FM471L: C5, D159, X, D160, X, D161, D162, X, D163, X, D164
FM472:
*
FM466: FM61:
*
* GENERATE ALIAS INFO
*
FM02: C2, D41, X, D42, X, ’"’, D43, ’"’
FM03: C8, ’,’, X, D42, X, ’"’, D43, ’"’
*
* GENERATE CATALOG INFO
*
FM05: C2, D44.9, X, ’"’, D45, ’"’
FM06: C4, ’,’, X, ’"’, D45, ’"’
*
* GENERATE DESCRIPTION
*
FM08: C2, D46, X, ’"’, D47, V2, ’"’
FM09: C13, ’,’, D47, V2, ’"’
*
FM01: ’;’
FM9999:
32

3
 3Export to Another Dictionary
Introduction

DictionaryManager enables you to use a TRANSLATION-RULE to TRANSLATE a dictionary
member, and then to TRANSFER the translated member to a file for input to another dictionary.

The translation and transfer capabilities are described according to the identity of the target
dictionary. There is an export engine which can be used for a user-selected dictionary, and a
selectable unit for the dictionary of particular vendors.

This chapter describes the export engine for User Selected Dictionary (selectable unit
DYR-TE00), which is a prerequisite for any export selectable units. With the corporate dictionary
definition export engine for User Selected Dictionary, you can export information from a Manager
Products dictionary to a dictionary or directory of your choice. This export engine enables you to:

• SET (and QUERY) the default translation rule

• TRANSLATE members to the format of the target dictionary

• TRANSFER the translated members to an external file

• Use a set of format lines and parameter numbers set up for this engine

Refer to "SET and QUERY TRANSLATION" on page 38 for information on the SET and
QUERY TRANSLATION command.

How to Translate Members Using the Translation Rules
With the TRANSLATE command, you can translate members from a Manager Products
dictionary into source input statements for another dictionary system. You can select an individual
member, all members of a member type, or a selection of members of a particular member type.

The translation process will refer to a TRANSLATION-RULE for the member type, supplied by
ASG or defined by you, and held on the MP-AID.

The TRANSLATE command and the SET/QUERY TRANSLATION commands use keywords to
identify the target dictionary type. The keywords IDD and IDMS are used for translation to the
IDD and for IDMS compilers respectively. Use the keyword OTHER-DICTIONARY for
translation to a user-selected dictionary.
33

ASG-DictionaryManager User’s Guide
You can specify which TRANSLATION-RULE is to be used, either as a default in a previous SET
TRANSLATION command or to override the default, in the current TRANSLATE command. If
you specify an individual member, you must also specify the TRANSLATION-RULE to be used,
in a USING clause.

Refer to "SET and QUERY TRANSLATION" on page 38 for the SET and QUERY command.

After translation, the source statements are held in an MP-AID USER-MEMBER. The name you
give it must be no more than ten characters long.

The USER-MEMBER can be a PRIVATE USER-MEMBER or a PUBLIC USER-MEMBER. A
PUBLIC USER-MEMBER can be accessed by someone with a different logon identifier.

If you have the ControlManager Extended Interactive Facility (selectable unit CMR-FE01), you
can edit the USER-MEMBERs.

Refer to "TRANSLATE Command" on page 101 for the syntax of the TRANSLATE command.

Using the TRANSLATE Command
This is the basic command for translating an individual member:

For example:

TRANSLATE MANAGER-DICTIONARY MEMBER EXAMPLE-MEMBER
TO OTHER-DICTIONARY
ONTO PUBLIC EX-MEMBER
USING TR-RULE-X;

translates the Manager Products dictionary member EXAMPLE-MEMBER using the MP-AID
TRANSLATION-RULE member TR-RULE-X.

This is the basic command for translating the set of all members of a specific member type:

TRANSLATE MANAGER-DICTIONARY MEMBER member-name

TO IDD
IDMS
OTHER-DICTIONARY

USING mp-tr-rule

ONTO PUBLIC
PRIVATE

mp-user;

TRANSLATE MANAGER-DICTIONARY MEMBER member-name

TO IDD
IDMS
OTHER-DICTIONARY

ONTO PUBLIC
PRIVATE

mp-user;
34

3 Export to Another Dictionary
For example:

TRANSLATE MANAGER-DICTIONARY GROUPS
TO IDD
ONTO PUBLIC MP-GROUP ;

translates all GROUP member definitions on the Manager Products dictionary to IDD member
definition syntax, and outputs the translated definitions to a USER-MEMBER on the MP-AID,
named MP-GROUP, which can be copied by someone with a different logon ID. The GROUP
members will be translated according to default TRANSLATION-RULEs established by a
previously-issued SET TRANSLATION command.

The optional keyword REPLACE is provided so that you can replace the contents of an existing
MP-AID member with the output generated by the TRANSLATE command. If REPLACE is not
specified, mp-user must not be the name of a member that already exists on the MP-AID (unless
APPEND is also specified—see below). If REPLACE is specified and mp-user does not already
exist on the MPAID, a new member named mp-user is created.

For example:

TRANSLATE MANAGER-DICTIONARY GROUPS
TO IDMS
ONTO PUBLIC MP-EXAMPLE REPLACE;

The optional keyword APPEND is provided so that you can append the output generated by the
TRANSLATE command to the contents of an existing MP-AID member. If APPEND is specified
and mp-user does not already exist on the MPAID a new member named mp-user is created.

For example:

TRANSLATE MANAGER-DICTIONARY GROUPS
TO IDMS
ONTO PUBLIC MP-EXAMPLE APPEND;

If PRINT is specified, all output produced by the TRANSLATE command is printed/displayed as
it is generated. If PRINT is omitted, only messages are printed/displayed. PRINT is particularly
useful for locating the cause of errors when a TRANSLATE command fails to execute
successfully; it enables you to look at the translation process and to see messages in the context of
all the output produced.

You can also translate any basic Manager Product member type (such as GROUP), and any user
defined members based on that type, by using the keyword GENERIC. To set up user-defined
members you need the User Defined Syntax facility.

For example:

TRANSLATE MANAGER-DICTIONARY GENERIC GROUP
TO IDD
ONTO MP-GROUP PRINT;
35

ASG-DictionaryManager User’s Guide
This will translate all generic GROUP member definitions on the Manager Products dictionary to
IDD member definition syntax, and output the translated definitions to a USER-MEMBER on the
MP-AID named MPGROUP, automatically printing out the translated source as it does so.

Refer to "SET and QUERY TRANSLATION" on page 38 for the SET and QUERY command and
refer to "TRANSLATE Command" on page 101 for the syntax of the TRANSLATE command.

The USING Clause in the TRANSLATE Command
You can apply a TRANSLATION-RULE different from the current default rule by specifying, in
an optional clause, the appropriate TRANSLATION-RULE member:

USING mp-tr-rule

For example:

TRANSLATE MANAGER-DICTIONARY GROUPS
TO IDD
ONTO PUBLIC MP-GROUP
USING TR-GROUP;

Use of KEEP-DATA Lists in the TRANSLATE Command
You can translate all the members of a member type or generic member type, or you can select
members, put them in a KEPT-DATA list, [using KEEP (IN name) (AND)...], and translate those
of any one type from there. To do this, insert the keyword KEEP or the clause KEPT IN name:

KEEP LIST ONLY PROJ07;
TRANSLATE MANAGER-DICTIONARY KEPT GROUPS TO IDD
ONTO PRIVATE P07-MP-GRP USING TR-GRP-P07

This translates any GROUP member definitions in the Manager Products unnamed KEPT-DATA
list to IDD member definition syntax, according to the TRANSLATION-RULE TR-GRP-P07. It
then stores the translated definitions to a USER-MEMBER named P07-MP-GRP on the MP-AID.
The USER-MEMBER can only be used through your logon ID. The TRANSLATION-RULE
TR-GRP-P07 will override any default established by a previously issued SET TRANSLATION
command.

How to TRANSFER Members
The TRANSFER command enables you to transfer translated dictionary member definitions from
the MP-AID to an external file. Since the definitions will be in the form of source statements for
another type of dictionary, you can use the external file as input to that dictionary. This is the basic
form of the command:
36

3 Export to Another Dictionary
For example:

TRANSFER FROM USER-MEMBER MP-GROUP
TO FILE DIC2SRC PARTITIONED;

This transfers the member definitions, previously translated to source for the target dictionary,
from the MP-AID USER-MEMBER MP-GROUP to an output source library dataset with a
logical file name of DIC2SRC. (This is the ddname or dtfname used in job control statements.)

The TRANSFER command can optionally include the keywords PARTITIONED and
SEQUENTIAL for particular environments. An AS clause is also available to generate your own
library name.

Refer to "TRANSLATE Command" on page 101 for the syntax of the TRANSFER command.

Keywords PARTITIONED and SEQUENTIAL in the TRANSFER Command
The keyword PARTITIONED is available for OS environments. It defines the dataset to be a
BPAM-partitioned dataset.

The alternative keyword SEQUENTIAL defines the dataset to be a QSAM sequential dataset.
With this alternative, you have the option of adding a library system control card image to the
output dataset, immediately before the copied source statements.

This is a character string of up to 72 characters in quotes, which may contain a single question
mark (?) to indicate the point at which the generated library member name is to be inserted in the
control card. If your character string occupies less than 72 characters, trailing spaces are implied.

For example:

TRANSFER FROM MEMBER-NAME MP-GROUP
TO FILE IDDSRC SEQUENTIAL ’ CATALS X.?’

You can specify a name to be generated as the library name, in an optional AS clause. Otherwise
the MP-AID name is used.

If the output dataset is SEQUENTIAL and you do not specify a control card, then the standard
IBM library update control card is used, as follows:

• Under OS, an IEBUPDTE control card:

’./ ADD LIST=ALL,NAME=?’

• Under DOS, a MAINT control card:

CATALS I.?’

TRANSFER

TO FILE filename PARTITIONED
SEQUENTIAL ['control-card']

[AS library-name]

FROM USER-MEMBER mp-user [LOGON logon-id]
37

ASG-DictionaryManager User’s Guide
where the question mark (?) indicates the point at which the generated library member name is
inserted. The control card is written to the output dataset, immediately before the copied source
statements.

With the above form of the command, the copied source statements are catalogued in the output
source library dataset with the name of the MP-AID USER-MEMBER being transferred.

Use of the AS Clause in the TRANSFER Command
You can command generation of your own library name, by adding the optional clause:

AS library-name

For example, the command:

TRANSFER FROM USER-MEMBER MP-GROUP
TO FILE DIC2SRC AS #MPRGRUP

will transfer the member definitions translated to source for the target dictionary from the MP-AID
USER-MEMBER MP-GROUP to an output source library dataset with a logical file name (that is
the ddname or dtfname used in job control statements) of DIC2SRC.

The generated library member in the output data has the name ƒMPRGRUP. The name must not
be more than 16 characters long. The first character must be alphabetic, ƒ, £, %, @, or a local
currency symbol with the internal code hexadecimal SB.

SET and QUERY TRANSLATION
With DictionaryManager installed, Manager Product dictionary members can be defined,
translated, and transferred to dictionaries of other products. The rules that describe the detailed
equivalencies between the Manager Product dictionary and the target dictionary are set out in a
DictionaryManager translation rules.

The SET TRANSLATION command is used to:

• SET the default rule that will be used when a member of a particular type is to be translated
to the specified dictionary.

• Specify the OPTIONS that will be output (once only) at the beginning of every translate
session (for IDD).

Refer to the ASG-ControlManager User’s Guide for details of how to tailor your environments.

SET and QUERY TRANSLATION for Base Member Types
To set a default TRANSLATION-RULE for a particular member type, enter:
38

3 Export to Another Dictionary
where:

member-type is a base member type name such as GROUP or ITEM.

mp-tr-rule is the name of the TR-RULE member on the MP-AID that is to be used in
the TRANSLATION.

The TR-RULE clause can be repeated.

OTHER-DICTIONARY is the keyword for use with the corporate dictionary definition export for
User Selected Dictionary.

IDD is the keyword to use for translation to the IDD compiler; IDMS is the keyword to use for
translation to the IDMS compiler. Export to IDD and IDMS is possible only if the corporate
dictionary definition for export to DD selectable unit DYR-TE08 is installed.

To find out the current TRANSLATION setting, enter:

SET and QUERY TRANSLATION for UDS Member Types
To set a TRANSLATION-RULE for a Manager Product UDS member type, the User Defined
Syntax facility must be installed.

To set a TRANSLATION-RULE for a Manager Product UDS member type, enter:

where:

member-type is a UDS member type such as PROCESS.

mp-tr-rule is the name of the TR-RULE member on the MP-AID that is to be used in
the TRANSLATION.

The TR-RULE clause can be repeated.

SET TRANSLATION [OTHER-DICTIONARY
IDD
IDMS

TR-RULE FOR MANAGER-DICTIONARY member-type
TO mp-tr-rule;

QUERY TRANSLATION [OTHER-DICTIONARY
IDD
IDMS

SET TRANSLATION [OTHER-DICTIONARY
IDD
IDMS

TR-RULE FOR MANAGER-DICTIONARY member-type
TO mp-tr-rule;
39

ASG-DictionaryManager User’s Guide
OTHER-DICTIONARY is the keyword for use with the corporate dictionary definition export for
User Selected Dictionary.

IDD is the keyword to use for translation to the IDD compiler; IDMS is the keyword to use for
translation to the IDMS compiler. Export to IDD and IDMS is possible only if the corporate
dictionary definition for export to IDD is installed.

If the User Defined Syntax facility is installed, then as well as setting the translation of the basic
ASG-supplied member type, you can also set the translation of all user-defined member types
based on that type; this is done by including the keyword GENERIC in the TR-RULE clause.

For example:

SET TRANSLATION OTHER-DICTIONARY
TR-RULE FOR MANAGER-DICTIONARY GENERIC GROUPS
TO TR-GGRP

SET and QUERY TRANSLATION for Cullinet’s IDD
With DictionaryManager installed, Manager Product dictionary members can be defined,
translated, and transferred to Cullinet’s IDD. The rules that describe the detailed equivalencies
between the Manager Product dictionary and IDD are set out in translation rules. A set of default
rules is supplied by ASG.

For example, to set up default TRANSLATION-RULEs:

• For a Manager Product member type ITEM and for all user-defined member types based on
ITEM

• For a user-defined member type PROCESS

enter:

SET TRANSLATION IDD
TR-RULE FOR MANAGER-DICTIONARY GENERIC ITEM TO DEF-TR-ITM
TR-RULE FOR MANAGER-DICTIONARY PROCESS TO DEF-TR-GGP;

You can also specify sign on and session options for the IDD dictionary. For example:

SET TRANSLATION IDD
SIGNON ’USER FRED DICTIONARY IDD1’,
’USAGE MODE IS PROTECTED UPDATE’
OPTIONS ’QUOTE IS "’,
’INPUT COLUMNS ARE 1 THRU 72’;

SET TRANSLATION [OTHER-DICTIONARY
IDD
IDMS

TR-RULE FOR MANAGER-DICTIONARY GENERIC member-type
TO mp-tr-rule;
40

3 Export to Another Dictionary
The QUERY TRANSLATION command can be used as follows:

QUERY TRANSLATION;

causes all the previously SET TRANSLATION-RULES to be displayed.

QUERY TRANSLATION IDD;

causes the previous SET IDD TR-RULES, SIGNON and OPTIONS to be displayed.

QUERY TRANSLATION IDD SIGNON;

causes the previously SET IDD SIGNON information to be displayed.

QUERY TRANSLATION IDD TRANSLATION-RULES;

causes the previously SET IDD TR-RULES to be displayed.
41

ASG-DictionaryManager User’s Guide
42

4
 4Import Executive Routines and Variables
Extract Executive Routines

Introduction
Extract executive routines are used during the extract stage of the import procedure. They are
invoked with the USING keyword of the EXTRACT command.

When importing objects from an external environment (for example, a COBOL program) into a
repository, you should use extract executive routines to reorganize extracted information. This
information can be used in the reconcile and preview stages of the import procedure.

You can extract information for other purposes: building reports, for example, or taking advantage
of the Procedures Language to extract, reformat, and then export information (without adding it to
a repository). For such purposes, the subsequent import stages are not required and the purpose of
extract executive routines is simply to manipulate extracted information.

The following sections assume that you are extracting external objects in order to import them into
a repository; however, if you intend to extract for other purposes you may still find them useful.

Whatever your purpose in extracting information from an external environment, it will help if that
environment is subject to standards. This makes it simpler to write extract executive routines to
locate required information.

Storing Extracted Information
Extracted information can be copied into:

• A single default variable array called EXT_RECORD. Each record read is extracted whole,
and stored in a separate element of the array.

• One or more named variable arrays. You can store specific fields of records in different
variables and select or exclude data meeting certain conditions using the data storage and
selection facilities of the EXTRACT command.
43

ASG-DictionaryManager User’s Guide
For example, the following might be stored in the first five elements of EXT_RECORD when
extracting from a COBOL program:

Note:
The variable EXT_RECORD is automatically cleared before being used. If you specify your own
variables to hold data, you must clear them yourself; if they are not cleared, data in them is
overwritten.

After storing extracted data, you can then use extract executive routines to move information into
other variables. These can be:

• Mandatory variables to be used by executive routines during the reconcile stage

• User-defined variables (that is, variables of your choice), to be used by executive routines to
derive the repository definitions you want, during the preview stage

You must populate the mandatory variables, but use of user-defined variables is optional. You
may be able to build preview executive routines that manipulate information in the way you want
without moving it out of the default array EXT_RECORD.

For more complex translation, it is usually more productive to store information in other variables,
either using extract executive routines or the data selection and storage capabilities of the
EXTRACT command.

Refer to Chapter 6, "Syntax of Commands and Member Types," on page 67 for details of the
EXTRACT command.

For complex translations, the data storage and selection facilities of the EXTRACT command may
not be sufficient. In these cases, you should write extract executive routines to move extracted
information stored on the WBTA as required.

You can use a combination of the SEARCH, WORD, and SUBSTR directives to search for a
particular string or keyword (and associated subordinate strings/keywords) and then move selected
information into other variables.

For example, if you are extracting the source of a COBOL program, you might want to extract
information from CALL and associated USING statements.

Element Number Extracted Contents

1 '*-----------------------'

2 'IDENTIFICATION DIVISION.'

3 '*-----------------------'

4 'SKIP2'

5 'PROGRAM-ID. SDD11.'
44

4 Import Executive Routines and Variables
If you know the row and character position of a string within an array, you can use the SUBSTR
directive to copy it to another variable. For example, to put the contents of the 10th to 18th
character positions of the third element in EXT_RECORD into the third element of the variable
PROG_NAME, enter:

PROG_NAME(3) = SUBSTR(EXT_RECORD(3),10,18)

When you have extracted free-form (as opposed to fixed-form) information, the WORD directive
will be useful. For example:

if WORD (EXT_RECORD(a), 3) = :USING: then do

(For the purpose of the examples used in this section, assume that the colon character (:) has been
defined as a literal delimiter).

Both WORD and SUBSTR can be combined with SEARCH to scan for a string and store parts of
it in a variable. For example:

ROWI = SEARCH(:EXT_RECORD:,:SEARCH-STRING:,,,:P:)
IF ROWI > 0 THEN VARIABLE=WORD(EXT_RECORD(ROWI),2)

How to Organize Information on the WBTA
You should organize extracted information into variable arrays (for both mandatory and
user-defined variables) as follows:

• Use dedicated arrays; that is, store occurrences of the same type of information in the same
array.

• Use dedicated elements; that is, use the same element in each of the dedicated arrays to store
information that relates to one object.

The following table represents the method described above, using two mandatory variables
(EXT_OBJ_NAME and EXT_OBJ_TYPE) and two user-defined variables (EXT_SECURITY
and EXT_DESCRIPTION) as examples of how information relating to one object (the third on the
WBTA) should be stored.

All of the extracted information relating to a program called SDD11 is stored in the third element
of each array. Each array is used to hold all occurrences of a particular type of information.

Array (element) Contents

EXT_OBJ_NAME (3) 'PG-SDD11'

EXT_OBJ_TYPE (3) 'PROGRAM'

EXT_SECURITY (3) '200'

EXT_DESCRIPTION (3) 'EXAMPLE'
45

ASG-DictionaryManager User’s Guide
Mandatory Variables

Introduction
Before building extract executive routines you must consider what part of the extracted
information you want to translate into a repository member and what relationships each of these
repository members are to have with one another.

The information to be stored in the mandatory variables is related to the identity of the repository
members you want to derive from the extracted information, the relationships between them, and
whether or not you want a definition to be generated. The information must be stored in mandatory
variables, to be located by reconcile executive routines.

Parents, Children, and Referenced Objects
An external object imported during the extract stage is known as a parent object, and can refer to
other objects (known as its children). You can use the information imported about a parent object
to generate a repository member that contains attributes defining the parent object’s relationship to
its children.

Children that can have children of their own are known as referenced objects.

Information about children that are not referenced objects can be extracted and then documented
as repository members. You cannot extract information about referenced objects.

During the populate stage, referenced objects are added to the repository as dummy members
referenced by the member documenting the parent object, unless members with these names
already exist in the repository (in which case, relationships are created from the parent to these
members).

To show parent, children, and referenced objects, use the reconciliation report produced by the
RECONCILE command.

Refer to Chapter 6, "Syntax of Commands and Member Types," on page 67 for details of the
RECONCILE command.

Parent-children Relationships
The reconciliation report groups objects together in a parent-child chain. You should decide if any
of the relationships you want to establish can be usefully represented in this report, in terms of a
parent-child relationship.

If you are importing a number of tables and associated objects from DB2, the reconciliation report
displays each imported table as parents followed by the objects associated with it (for example, the
columns) as children. This makes the reconciliation report easier to read, since each table and its
children are grouped together.

However, if you import a message library from ISPF, the parent-child relationship may not be
relevant; you intend each message to be a separate repository member without references to the
others. In such a case all the imported objects might best be regarded as parents.

Create parent-children relationships using the variables EXT_OBJ_CHAIN and
EXT_OBJ_PARENT_POINTER.
46

4 Import Executive Routines and Variables
Parents and children need to be chained together via EXT_OBJ_CHAIN; the parent points to one
child, which in turn points to another, and so on. Each child must point to the parent via
EXT_OBJ_PARENT_POINTER. Each extracted object may have several parents and each parent
may have any number of children.

The relationships represented in the reconciliation report are not automatically translated into
relationships in the repository. However, you can use the information stored in
EXT_OBJ_CHAIN to build a reference (a CONTAINS attribute, for example) into the definition
generated by your preview executive routines for a parent object. You can also manipulate the
information stored in EXT_OBJ_PARENT_POINTER to build references (via SEE attributes for
example) between the definitions generated for the children.

You may not want to generate definitions for all extracted objects. You may want to generate
definitions for some objects, but only references to dummy members for others.

You can control the generation of definitions using the DMR_MEM_GEN variable. Set this to
GEN if you want your preview executive routines to generate a definition, or to REF if you want
your preview executive routines to generate a reference only.

Example of a Parent-child Relationship
Following is an example of how a parent-child relationship can be created for the objects named
(in EXT_OBJ_NAME) Parent, Child1, Child2, and Child3, with the variables EXT_OBJ_CHAIN
and EXT_OBJ_PARENT_POINTER.

This table gives values for the variables named above:

Figure 3 on page 48 illustrates the structure described above:

Object EXT_OBJ_NAME EXT_OBJ_CHAIN EXT_OBJ_PARENT_POINTER

a Parent b null

b Child1 c a

c Child2 d a

d Child3 null a
47

ASG-DictionaryManager User’s Guide
Figure 3. Example of a Parent-child Relationship

Note:
Null equals no value. To set an element of a variable to no value, enter:

variable_name(x)=::

where variable_name is the name of the variable, and x is the element to be set to null.

User-defined Variables

Introduction
During the extract stage, you should structure the extracted information so that your preview
executive routines can find and process it efficiently. You can do this using extract executive
routines and/or the data selection and storage capabilities of the EXTRACT command.

Refer to Chapter 6, "Syntax of Commands and Member Types," on page 67 for details of the
EXTRACT command.

Repeating Attributes
To store information about repeating attributes (that is, multiply occurring attributes—a
DESCRIPTION attribute with several lines, for example) you must define these items:

• A POINTER variable you can relate to the object

• An OCCURRENCE variable you can relate to the object

• A variable array to contain the repeating attribute

Parent

Child1

Child2

Child3

null EXT_OBJ_PARENT_POINTER

(a)

EXT_OBJ_CHAIN
(b)

EXT_OBJ_CHAIN
(c)

(d)
EXT_OBJ_CHAIN

nullEXT_OBJ_CHAIN

EXT_OBJ_PARENT_POINTER
48

4 Import Executive Routines and Variables
For example, to store four description lines of program SDD11:

• Define the variables EXT_OBJ_DESC_PTR (the pointer), EXT_OBJ_DESC_OCC (the
occurrence), and PGM_DESC (the new array to hold description lines).

• Set EXT_OBJ_DESC_PTR(c) to one, to show that the pointer belongs to SDD11 (object c).
The value it is set to is the first element number within PGM_DESC which holds a
description line (element 1).

• Set EXT_OBJ_DESC_OCC(c) to four, to show a total of four description lines

• Set PGM_DESC(1) to description line one of SDD11, PGM_DESC(2) to description line 2
of SDD11, and so on.

This arrangement is shown in Figure 4 on page 49.

Figure 4. Example of Storing Repeating Attributes

Relationships
You can use a related group of arrays to store information about relationships between objects. For
example, to store information about which modules program SDD11 calls and the relevant CALL
parameters, define these variables:

• EXT_OBJ_REL_PTR (a pointer)

• EXT_OBJ_REL_OCC (the occurrence)

• CALLS_PARM (to hold the CALLS parameters and used by preview executive routines to
form a CALLS attribute in the repository)

• CALLS_MOD_PTR (a pointer to the modules that SDD11 calls)

• CALLS_MOD_OCC (the number of calls that SDD11 includes)

Figure 5 on page 50 represents the method described above:

EXT_OBJ_NAME(c) = 'SDD11'
EXT_OBJ_DESC_OCC(c) = 4
EXT_OBJ_DESC_PTR(c) = 1

PGM_DESC
'line1'
'line2'
'line3'
'line4'

PGM_DESC(1)
PGM_DESC(2)
PGM_DESC(3)
PGM_DESC(4)
49

ASG-DictionaryManager User’s Guide
Figure 5. Example of Storing Relationship Information

So, the related group of variables CALLS_PARM, CALLS_MOD_OCC, and
CALLS_MOD_PTR constitute the relationship between the program SDD11 (object c) and the
modules that it calls (object x, for example).

Reconcile Executive Routines

Introduction
Reconcile executive routines are used during the reconcile stage of the import procedure, and are
invoked via the USING keyword in a RECONCILE command.

Reconcile executive routines are used to generate proposed member names and types for your
consideration before you generate definitions and subsequently add them to a repository.

Use reconcile executive routines to process extracted information as follows:

• Translate the information stored in EXT_OBJ_TYPE to represent specified repository
member types and store this translated information in DMR_MEM_TYPE.

• Translate the information stored in EXT_OBJ_NAME to represent specified repository
member names and store this translated information in DMR_MEM_NAME.

Element numbers of variables holding information to be translated should match up with element
numbers of variables storing translated information.

For example, after examining and translating the contents of EXT_OBJ_NAME(2), the translated
information should be stored in DMR_MEM_NAME(2).

A reconciliation report is automatically displayed during the reconcile stage. This report gives
details of the proposed members’ names and types and whether or not they are already present in
the repository.

Refer to Chapter 6, "Syntax of Commands and Member Types," on page 67 for details of the
RECONCILE command.

EXT_OBJ_NAME(c)
EXT_OBJ_TYPE(c)
EXT_OBJ......(c)
EXT_OBJ_REL_OCC(c)
EXT_OBJ_REL_PTR(c) CALLS_PARM(1)

CALLS_MOD_OCC(1)
CALLS_MOD_PTR(1)

EXT_OBJ_NAME(x)
50

4 Import Executive Routines and Variables
Tailoring Common Clauses
After reconcile executive routines are executed, the executive routine MPDYWTEXCC is
invoked. If any proposed member names already have a definition in the currently open repository
(that is visible from the current status), this routine extracts the common clauses from the
repository members and copies them into variables on the WBTA. These clauses can subsequently
be merged by preview executive routines with the proposed members.

You can alter MPDYWTEXCC to tailor the way that common clauses are handled. For example,
if your installation standards mean that you do not need COMMENT attributes, you can tailor
MPDYWTEXCC to suppress it.

MPDYWTEXCC is passed two parameters:

• curr is the DMR_MEM_NAME array number of the current member being processed.

• head is the DMR_MEM_NAME array number of the first member in a chain of members
with the same name.

head equals curr when the current member is processed for the first (or only) time. If the two
values differ, then the current member (at curr) has already been processed (at head) and the
variables associated with head can be used for curr; so, no more DRETRIEVEs are needed.

To simplify common-clause processing, rules which drive the processing are set up in the supplied
executive routine MPDYWTDFLT, called at the start of the reconcile stage. These rules can be
altered or added to as shown in the routine. Alternatively, you can add your own, special
processing, as shown in MPDYWTEXCC.

Mandatory Variables
Certain variables must be used to store particular types of extracted information and other
information required during the reconcile stage of the import procedure (by the RECONCILE
command).

The mandatory variable names, and the type of information that should be stored in each, are listed
in this table.

Variable Name Stores

EXT_OBJ_NAME The name of an imported object in the environment from
which it was imported.

EXT_OBJ_ID The fully qualified name of an imported object in the
environment from which it was imported. This variable
supports the Manager Products message DM05703I that is
output as the result of an EXTRACT command to tell you the
names of the external objects that have been imported.

EXT_OBJ_TYPE The type of the imported object in the environment from
which it was imported.

EXT_OBJ_PARENT_POINTER A pointer from a child to a parent object (in the context of the
parent child relationship represented in the reconciliation
report produced by the RECONCILE command).
51

ASG-DictionaryManager User’s Guide
Preview Executive Routines

Introduction
Preview executive routines are used during the preview stage of the import procedure, and are
invoked via the USING keyword in a PREVIEW IMPORT command.

Preview executive routines translate the information stored on the WBTA (during the extract and
reconcile stages) into repository definitions in the format you require.

You can write a line of definition by using the WRITEF directive to copy information stored in
variables into a definition. This definition may subsequently be used to update a repository during
the populate stage (via the POPULATE command).

System-generated Variables
These variables are generated automatically during the import process:

EXT_OBJ_CHAIN A pointer to the next child in a parent-child relationship chain.

EXT_OBJ_CHAIN_END Pointer from the parent object to the last child in a parent-child
relationship chain.

DMR_MEM_GEN Indicates if a member definition is to be generated (GEN) or
used as a reference only (REF).

EXT_OBJ_OCC The number of imported objects (not including references).

Variable Name Use

EXT_SAVE_GEN Contains a copy of DMR_MEM_EN as generated by
EXTRACT. Used for performance reasons.

EXT_STAGE Describes the import stage reached: extract, reconcile, or
preview.

MPDY_EXTRACT_SOURCE Set by the EXTRACT command to describe the environment
from which the extract was made: EXTERNAL-FILE,
COMMAND, VARIABLE, DB2, or SQL/DS.

REC_REP_TYPE Set by the RECONCILE command to describe what type of
report has been requested: SUMMARY or DETAIL.

Variable Name Stores
52

5
 5Format Lines and Parameter Numbers
Format Lines and Parameter Numbers Common to All Member
Types

These format lines and parameter numbers are common to all ASG-supplied member types.

Format line number groups may be indented to indicate that the related clause is subordinate. The
indented group is subordinate to the preceding group that is not indented as far. Three levels of
indentation are used. A number from an indented group can only be used within a processing loop
for its superior clause(s).

These are other parameter numbers that may be used in any format line:

Details of System Parameters

Format Line
Numbers

Parameter
Number

Description

FM01 D1 Date

D2 Dictionary user-name

D3 Time

D4 Logon ID

D5 Dictionary name

D6 Status name

D7 Status condition

Format Line
Numbers

Parameter
Number

Description

D21 'REPORT OF'

D22 Member type

D23 Member name

D24 'EDITION'

D25 Edition number / **DUMMY**
53

ASG-DictionaryManager User’s Guide
D26 'ENCODED BY'/'CREATED-BY'

D27 User

D28 'AT'

D29 Time

D30 'ON'

D31 Date

D32 'STATUS'

D33 Status name

D34 'PROTECTION'

D35 'NONE'/'OWNER'

D36 'REMOVE'

D37 'ALTER'

D38 'ACCESS'

D39 'OWNED BY'

D40 Owner name

FM02, FM03, FM04 D41 'ALIAS'

D42 Alias type

D43 Alias name

FM06, FM06, FM07 D44 'CATALOGUED AS'

D45 Catalog classification string

FM08, FM09, FM10 D46 'DESCRIPTION'

D47 Description string

FM11, FM12, FM13 D48 'NOTE'

D49 Note string

FM14, FM15, FM16 D51 'ADMINISTRATIVE-DATA'

D52 Administrative data string

FM32, FM33, FM34 D77 'EFFECTIVE-DATE'

D78 Effective date

FM35, FM36, FM37 D79 'OBSOLETE DATE'

D80 Obsolete date

FM38, FM39, FM40 D53 'COMMENT'

Format Line
Numbers

Parameter
Number

Description
54

5 Format Lines and Parameter Numbers
D54 Comment string

FM41, FM42, FM43 D55 'QUERY'

D56 Query string

FM44, FM45, FM46 D57 'FREQUENCY'

D58 Process mode

D59 Interval

D60 Value/details

FM47, FM48, FM49 D70 'SECURITY-CLASSIFICATION'

D71 Security details string

D72 'FROM'

D73 Date

FM50, FM51, FM52 D74 'ACCESS-AUTHORITY'

D75 Access authority

D76 Name of access authority mode

FM53, FM54, FM55 D81 'SEE'

D82 See member name

D83 'FOR'

D84 See qualification

A concluding line for the whole output:

FM9999 Any character string

Format Line
Numbers

Parameter
Number

Description
55

ASG-DictionaryManager User’s Guide
Format Lines and Parameter Numbers for Basic Member Types

For ITEM Members

Format line number groups may be indented to indicate that the related clause is subordinate. The
indented group is subordinate to the preceding group that is not indented as far. Three levels of
indentation are used. A number from an indented group can only be used within a processing loop
for its superior clause(s).

Format Line Numbers Parameter
Number

Description

FM59, FM60, FM61 D110 Form

D111 'VERSION'

D112 Version number

D113 'USER-EXIT'

D114 User exit module name

FM461, FM462, FM463 D115 'HEADINGS'

D116 Heading string

FM59, FM60, FM61 D117 'USAGE'

D118 Usage string

D119 'SIGNED'/'UNSIGNED'

D120 'VARIABLE'/'FIXED'/'NULL'

D121 'TRUNCATED'/'ROUNDED'

D122 'COMPRESSED'

D123 'LEFT-'/'RIGHT-JUSTIFIED'

D124 Item type

D125 Minimum length integer digits

D126 Minimim length fraction digits

D127 'TO'

D128 Integer digits

D129 Fraction digits

D130 'NAME'

D131 Item name

D132 Item version

D133 'PICTURE'

D134 Picture string (delimited)
56

5 Format Lines and Parameter Numbers
D135 'WITH'

D136 'SEPARATE'

D137 'LEADING'/'TRAILING'

D138 'SIGN'

FM464, FM465, FM466 D150 'CONTENTS'

D151 'ELSE'

D152 Item type
('ALPHABETIC'/'ALPHAMERIC'/.../'FLOATING
-POINT')

D155 'CONDITION-NAME'

D156 Condition name

D157 'FORMA'

D158 Format

FM467, FM468, FM469 D153 'IS'/'RANGE'

D609 Lower limit

D610 'TO'

D611 Upper limit

FM470, FM471, FM472 D159 'IF'/'AND'/'OR'

D160 Item name B

D161 Version B

D162 Operator ('EQ'/.../'LE')

D163 Item name C/literal

D164 Version C

Format Line Numbers Parameter
Number

Description
57

ASG-DictionaryManager User’s Guide
58

For GROUP Members

Format Line Numbers Parameter
Number

Description

FM185, FM186, FM187 D300 'FORM'

D301 Form (ENTERED/HELD/REPORTED/
DEFAULTED-AS)

D302 'USER-EXIT'

D303 User exit name

FM188, FM189, FM190 D304 'KEYS'

D305 Member name

D306 'UNIQUE'/'DUPLICATED'

D307 'ASCENDING'/'DESCENDING'

FM191, FM192, FM193 D310 'CONTAINS'

D311 'NO MEMBERS'

D312 'ELSE'

D313 Bound start - '('

D314 Bound literal - name or numeric

D315 Bound version

D654 Bound literal - numeric

D655 ')' following numeric

D656 Bound literal - name

D657 ')' following name

D316 Member type

D317 Member name

D318 Member version

D319 'ALIGNED'/'UNALIGNED'/'NOT-ALIGNED'

D320 'KNOWN-AS'

D321 Known-as name

FM476, FM477, FM478 D330 'IF'/'AND'/'OR'

D331 Item name B

D332 Version B

D333 Operator ('EQ'/.../'LE')

D334 Item name C/literal

D335 Version C

5 Format Lines and Parameter Numbers
For FILE Members

Format Line Numbers Parameter
Number

Description

FM62, FM63, FM64 D180 'GENERATION-CYCLE'

D181 Generation cycle

FM65, FM66, FM67 D182 'RETENTION PERIOD'

D183 Retention period value

D184 Retention period detail units

FM68, FM69, FM70 D185 'GROWTH-RATE'

D186 Growth rate value

D187 'PERCENT'

D188 Details string/interval

FM71, FM72, FM73 D173 'DENSITY'

D174 Density

FM74, FM75, FM76 D175 'VOLUME'

D176 Volume

FM77, FM78, FM79 D177 'SIZE'

D178 Size value

D179 Size—units/size—details (STRING)

FM80, FM81, FM82 D190 'ORGANIZATION'

D191 'IS'

D192 'SEQUENTIAL'

D193 'INDEXED'

D194 'DIRECT'

D195 'KEYED'

D196 'VSAM'

D197 'PARTITIONED'

FM83, FM84, FM85 D202 'BLOCKING'

D203 'IS'

D204 Block format

FM86, FM87, FM88 D205 'BLOCK SIZE'

D206 'IS'
59

ASG-DictionaryManager User’s Guide
D207 Block size

FM89, FM90, FM91 D208 'RECORD SIZE'

D209 'IS'

D210 Record size

FM92, FM93, FM94 D198 'NO LABELS'/'LABELS'

D199 'ARE'

D200 'STANDARD LABELS'/user-labels module

D201 User-label module name

FM98, FM99, FM100 D170 'DEVICE'

D171 Device type

D172 Device number/model

FM101, FM102, FM103 D211 'SORT KEY'

D212 Member type

D213 Member name

D214 'ASCENDING'/'DESCENDING'

FM185, FM186, FM187 D300 'FORM'

D301 Form (DEFAULTED AS/ENTERED/HELD/
REPORTED)

FM191, FM192, FM193 D310 'CONTAINS'

D311 'NO MEMBERS'

D312 'ELSE'

D313 Bound start '('

D314 Bound literal name or numeric

D315 Bound version

D654 Bound literal numeric

D655 ')' following numeric

D656 Bound literal name

D657 ')' following name

D316 Member type

D317 Member name

D318 Member version

Format Line Numbers Parameter
Number

Description
60

5 Format Lines and Parameter Numbers
D319 'ALIGNED'/'UNALIGNED'

D320 'KNOWN-AS'

D321 Known-as name

FM476, FM477, FM488 D330 'IF'/'AND'/'OR'

D331 Item name B

D332 Version B

D333 Operator ('EQ'/.../'LE'

D334 Item name C/literal

D335 Version C

Format Line Numbers Parameter
Number

Description
61

ASG-DictionaryManager User’s Guide
For MODULE, PROGRAM, and SYSTEM Members

Details of PROGRAM Members

Format Line Numbers Parameter
Number

Description

FM110, FM111, FM112 D215 'AUTHOR'

D216 Author

FM113, FM114, FM115 D217 'INSTALLATION'

D218 Installation name

FM116, FM117, FM118 D219 'DATE-WRITTEN'

D220 Date

FM119, FM120, FM121 D221 'SOURCE-COMPUTER'

D227 Source computer

FM122, FM123, FM124 D228 'OBJECT-COMPUTER'

D229 Object computer

FM125, FM126, FM127 D230 'SPECIAL NAMES'

D231 Special names

FM128, FM129, FM130 D232 'I-O-CONTROL'

D233 IO control (TXT)

FM131, FM132, FM133 D234 'ASSIGNMENT'

D235 Assignment string

FM134, FM135, FM136 D236 'EDIT-INPUT'

D237 Edit input (TXT)

FM137, FM138, FM139 D238 'EDIT-OUTPUT'

D239 Edit output string

FM140, FM141, FM142 D240 'EDIT-UPDATE'

D241 Edit update string
62

5 Format Lines and Parameter Numbers
Details of MODULE, PROGRAM, and SYSTEM Members

Format Line Numbers Parameter
Number

Description

FM146, FM147, FM148 D250 'LANGUAGE'

D251 Language string/'NOT SPECIFIED'

FM149, FM150, FM151 D253 'ENTRY POINT'

D254 Entry point string

FM152, FM153, FM154 D255 'PARAMETERS'

D256 'NO-DATA'

D257 Member type

D258 Member name (for parameters)

FM155, FM156, FM157 D260 'INPUTS'

D262 Member type

FM158, FM159, FM160 D264 'OUTPUTS'

D266 Member type

D267 Member name

FM161, FM162, FM163 D268 'UPDATES'

D270 Member type

D271 Member name

FM164, FM165, FM166 D275 'CALLS'

D276 'NO MEMBERS'

D277 Member type

D278 Member name

D279 'AT'

D280 At string (entry point)

FM167, FM168, FM169 D281 'PASSING'

D282 Member type passed

D283 Member name passed

FM173, FM174, FM175 D284 'PROCESSES'

D285 DB type

FM176, FM177, FM178 D290 'CONTAINS'
63

ASG-DictionaryManager User’s Guide
Format Lines and Parameter Numbers for ASG-DesignManager
Members

Format line number groups may be indented to indicate that the related clause is subordinate. The
indented group is subordinate to the preceding group that is not indented as far. Three levels of
indentation are used. A number from an indented group can only be used within a processing loop
for its superior clause(s).

D291 'NO MEMBERS'

D292 Member type

D293 Member name

Details of ENTITY Members

Format Line Numbers Parameter
Number

Description

FM479, FM480, FM481 D613 'IDENTIFIER'

D614 'IS'

D615 Member name

FM482, FM483, FM484 D616 'ONE-ATTRIBUTES'

D617 'ARE'

D618 Member name

FM485, FM486, FM487 D619 'MULTI-ATTRIBUTES'

D620 'ARE'

D621 Member name

FM488, FM489, FM490 D622 'ONE-ASSOCIATIONS'

D623 'TO'

D624 Member name

FM491, FM492, FM493 D625 'MULTI-ASSOCIATIONS'

D626 'TO'

D627 Member name

Details of MODULE, PROGRAM, and SYSTEM Members

Format Line Numbers Parameter
Number

Description
64

5 Format Lines and Parameter Numbers
FM494, FM495, FM496 D628 'SUB-ENTITIES'

D629 'ARE'

D630 Member name

Details of USERVIEW Members

Format Line Numbers Parameter
Number

Description

FM503 D635 'RELATIVE-FREQUENCY'

D636 Integer

FM506 D637 'RESPONSE-TIME'

D638 Integer

FM509, FM510, FM511 D639 'DEPENDENCIES'

D640 'LHS'

D641 Member name

FM515, FM516, FM517 D642 'FD'/'MVD'

D643 MVD multiplicity

D644 'RHS'

D645 Member name

FM521, FM522, FM523 D646 'DOMAIN'

D647 'IS'

D648 Member name

FM527, FM528, FM529 D649 'SUB-DOMAIN'

D650 'IS'

D651 Member name

Details of ENTITY Members

Format Line Numbers Parameter
Number

Description
65

ASG-DictionaryManager User’s Guide
Details of VIEWSET Members

Format Line Numbers Parameter
Number

Description

FM533, FM534, FM535 D652 'CONTAINS'

D653 Member name
66

6
 6Syntax of Commands and Member Types
TRANSLATION-RULE Member Type

This is the full syntax for defining TRANSLATION-RULE members.

where:

member-type is any of the following or a user-defined member type based on any of the
following:

mp-aid-name is the name of the TRANSLATION-RULE member on the MP-AID (if different
from the original dictionary member name). It must be no more than 10 characters long.

ENTITY IDMS-SUBSCHEMA

FILE IDMS-VIEW

GROUP ITEM

IDMS-AREA MODULE

IDMS-DATABASE PROGRAM

IDMS-LOGICAL-RECORD SYSTEM

IDMS-PATH-GROUP USERVIEW

IDMS-RECORD VIEWSET

IDMS-SET

TRANSLATION-RULE [FOR MANAGER-DICTIONARY member-type]
[MP-AID-NAME mp-aid-name]

[common-clauses]

[VARIABLE Vm IS clause-1 [ELSE clause-1]...
USER-EXIT i PASSING arg [, arg]...
translate-clause

]...

CONTENTS

format-line
comment-line

;
.

67

ASG-DictionaryManager User’s Guide
common-clauses are as defined in the ASG-ControlManager User’s Guide.

Vm is the identifier of a variable, the value of which is defined in the VARIABLE clause. m is an
integer in the range 0 to 99.

clause-1 is

clause-2 is:

value is

arg is . A maximum of 15 args can follow the PASSING keyword.

Dm parameters represent standard attributes and clauses of member definitions.

Um parameters represent user-defined attributes defined by the User Defined Syntax facility.

Sm refers to a positonal argument passed to this TRANSLATION-RULE from a VARIABLE Vm
translate-clause.

string denotes any string of printable characters. A space (hex 40) is considered a printable
character.

translate-clause is:

TRANSLATE arg USING mp-tr-rule [PASSING arg [, arg]...]

 [clause-2]

format-line is format-line-identifier [output-specification]

format-line-identifier is

value[clause-2]

[IF arg
Vm

EQ
NE
GT
LT
GE
LE

value [AND arg
Vm

EQ
NE
GT
LT
GE
LE

value]...]

Dm
Um
Sm
'string'
NULL

Dm
Um
Sm

F M
N

n[Rr
L

]:
68

6 Syntax of Commands and Member Types
F specifies that the line is a format line.

M specifies that the output specified by the format line is to be positioned on the next output line.

N specifies that the output from this format line is to be treated as a continuation of the previous
format line.

n is an integer in the range 1 to 9999 that identifies a valid format line number for the
corresponding part of the report output.

R specifies that the current format line may only be processed a specified number of times.

r is an integer in the range 1 to 32767 that specifies the maximum number of times that this format
line may be processed.

L specifies that the current physical occurrence of information for this format line should be used.

output-specification is:

y is an unsigned integer that is a repeat count for the specifier or group of specifier that it
immediately precedes.

specifier is

/ denotes the end of a physical output line and causes a carriage return/line feed sequence on the
output device.

X denotes a skip of one character position on the output line.

Cc specifies that the following output is to start at column c, where c is an unsigned integer.

string, Dm, Um, Vm, and Sm are as defined above.

[y] specifier
(specifier [, specifier]...)

[,[y] specifier
(specifier [, specifier]...)

]...

/
X
Cc
[string]
Dm
Um
Vm
Sm

[.field-width [.R
.C
.L

]]
69

ASG-DictionaryManager User’s Guide
.field-width is an unsigned integer immediately preceded by a period (on the same line)
specifying the width of the field in which the preceding Dm, Um, Vm, or Sm is to be positioned.
(The period must appear immediately after the parameter, on the same line. It is not a decimial
point; it is a flag indicating to the software that the field width specification follows.) Parameters
that have character values are always left justified within a field unless right justification or
centering is indicated. Parameters that have integer values are always right justified within a
specified field.

.R specifies that the immediately preceding parameter is to be right justified within the specified
field. If .R is coded, it must appear immediately after the field width specification.

.C specifies that the immediately preceding parameter is to be centered within the specified field.
If .C is coded, it must appear immediately after the field width specification.

.L specifies that the immediately preceding parameter is to be left justified within the specified
field. If .L is coded, it must appear immediately after the field width specification.

comment-line is

string is a string of printable characters comprising a line of comment. A space (hex 40) is
considered a printable character. Each comment line must begin with an asterisk (*), which can
appear on a line by itself without a specified string of comment.

Remarks

1. If mp-name is not specified, and if the dictionary name of the TRANSLATION-RULE
member is no more than 10 characters long, the same name will be used for the
TRANSLATION-RULE member on the MP-AID. If the dictionary name of the
TRANSLATION-RULE member is more than 10 characters long, mp-name must be
specified or the member cannot be transferred to MP-AID.

2. Comment lines are not included in the output. Each comment line must be contained in one
input line, but you can use any number of consecutive comment lines.

3. A maximum of 15 args can follow the PASSING keyword.

EXTRACT Command
The EXTRACT command imports information and stores it for subsequent translation and/or
manipulation. Use this command to extract information from a named source and store it in
command variables on the WBTA. This is the command syntax:

EXTRACT source

where source is an external file, a Manager Products command or executive routine, or a
command or global variable array.

*[string]
70

6 Syntax of Commands and Member Types
Information extracted is divided into records and fields. A record is either a line of an external file
or command output, or an element in the command or global variable array. A field is a discrete
item of data within a record, separated (by default) by spaces. To specify your own field separator,
use the SEPARATOR keyword. Delimited strings within the source are always treated as one
field.

Information extracted is divided into records and fields. A record is either a line of an external file
or command output, or an element in the Command or Global Variable array. A field is a discrete
item of data within a record, separated (by default) by spaces. To specify your own field separator,
use the SEPARATOR keyword. Delimited strings within the source are always treated as one
field.

By default, each record of the extracted information is stored in a different element of the variable
array EXT_RECORD. To store the data in your own variable array(s), use the GENERATE
keyword.

You can extract selected parts of your source using a condition string if a part of your source
meets specific conditions.

You can import empty or blank records (in addition to records which have some content), using
the ALL-RECORDS keyword.

You can call specific executive routines with the USING keyword. These routines can manipulate
and move the extracted information as required.

Extracting from an External File
To extract information from a sequential file, enter either:

EXTRACT EXTERNAL-FILE ddname;

or

EXTRACT EXTERNAL-FILE ddname SEQUENTIAL;

where ddname is the name of the job control statement defining the file (up to eight characters
long).

To extract information from a member of a partitioned dataset, enter:

EXTRACT EXTERNAL-FILE ddname PARTITIONED member-name;

where member-name is the member of the partitioned dataset.

To extract information from the directory of a partitioned dataset and store the extracted
information in your own variable array, enter:

EXTRACT EXTERNAL-FILE ddname PARTITIONED DIRECTORY TO store-var;

where store-var is the name of your variable array.
71

ASG-DictionaryManager User’s Guide
Alternatively, to additionally extract directory user data, enter:

EXTRACT EXTERNAL-FILE ddname PARTITIONED DIRECTORY HEX TO store-var;

Note:
By default, empty or blank lines in external files are ignored. To import such records, use the
ALL-RECORDS keyword.

You can use EXTRACT EXTERNAL-FILE as the first step in importing objects from an external
file into your Manager Products environment.

Extracting from the Output of a Command
To extract information from the output of a command, enter:

EXTRACT COMMAND mpr-command;

where mpr-command is a delimited string giving the name of any primary command (except
another EXTRACT command) or any type of executive routine.

Note:
By default, empty or blank lines in a command are ignored. To import such records, use the
ALL-RECORDS keyword.

Extracting from a Variable Array
To extract information from a command or global variable array, enter:

EXTRACT VARIABLE input-var ALL;

where input-var is the name of the variable array.

To copy information extracted from a variable array to your own variable array, excluding null
elements and duplicate elements, enter:

EXTRACT VARIABLE input-var DISTINCT TO store-var;

where store-var is the name of your own variable array.

Note:
By default, empty or blank lines in a command are ignored. To import such records, use the
ALL-RECORDS keyword.

Storing Extracted Data in Specified Variable Arrays
To store extracted data in your own command variable arrays, enter:

EXTRACT source GENERATE variables;
72

6 Syntax of Commands and Member Types
where variables give rules specifying which variables will hold the extracted information, to
be applied repeatedly to the records of the extracted data. They are defined by the positions of the
variable names in relation to each other, and special characters. These are the special characters:

• A period (.) skips over a field.

• A comma (,) skips to the start of the next record.

• A percent (%) stores a whole record in a variable, whose name must immediately follow this
character, and must appear between two commas or be the first or last element of the rules
specified.

For example, to extract information from an external file CMPINF, and store it in the two variable
arrays NAME and CONTENTS, enter:

EXTRACT EXTERNAL-FILE CMPINF GENERATE ’NAME,%CONTENTS’

NAME(1) will hold the first field of the first input line. CONTENTS(1) will then hold the whole
of the next input line. The process will then continue, for NAME(2), CONTENTS(2), and repeat
until extraction stops.

Specifying a Field Separator
To override the default field separation character (space), enter:

EXTRACT source SEPARATOR separator;

where separator is a single (delimited) character.

For example, if you are extracting from an external file with ddname DATA3, which has a comma
as its field separator, you can override the default field separator for that file, by entering:

EXTRACT EXTERNAL-FILE DATA3 SEPARATOR ’,’;

Storing Extracted Data in Specified Parts of Variables
To specify an array element number for your storage variable(s), at which to start storing extracted
information, enter:

EXTRACT source ARRAYNUM num;

where num is the array element number.

For example, to extract the contents of an external file with a job control definition of CFILE1,
starting storing the lines of that file in the tenth array element (of EXT_RECORD), enter:

EXTRACT EXTERNAL-FILE CFILE1 ARRAYNUM 10;

Note:
You can store the results of multiple extractions in one variable array (or set of arrays) by storing
extracted information in different parts of the array.
73

ASG-DictionaryManager User’s Guide
Extracting Selected Data
You can specify conditions under which data is extracted using a condition string (and optionally a
column position) by entering either:

EXTRACT source keyword condition;

or

EXTRACT source keyword POS position condition;

where:

condition is a delimited string matched against each record in your source. If a match
occurs, the appropriate action (specified by keyword) is taken. By default, the condition
string is matched against characters starting from the first character in each record (ignoring
leading blanks).

Note:
You can specify several conditions for starting and ending extraction, but since extraction
can only start and end once, no more than one start and end condition (the first encountered)
can be met.

position is a number specifying a column position, to match the string against characters
starting in that position in each record.

keyword is any of the keywords listed in the table below, along with the action taken if a
match occurs. You can use combinations of keywords in one command, to suit your
requirements. Each keyword can be repeated up to 180 times.

Some keywords deal with groups. A group is the amount of data needed to populate one element
of each variable defined in the GENERATE clause (by default, this is one element of
EXT_RECORD). Groups always start on a new line of input.

Keyword Action

STARTF or STARTA Start extracting data from or after the first record on which a
match is found.

ENDF or ENDA End extracting data from or after the first record on which a
match is found.

SELECTG or SKIPG Select or skip over groups of data. Selection or skipping stops
at the end of the group. Only groups whose first record
contains the string are selected.

SELECTR or SKIPR Select or skip over those records containing the condition
string.
74

6 Syntax of Commands and Member Types
You can also extract selected data based on a definite range within your source. For example, to
select the first 100 lines in a file enter:

EXTRACT source RECORDS rec1;

or

EXTRACT source RECORDS rec1 TO rec2;

where:

rec1 is the record number at which data storage should start.

rec2 is the record number after which data storage should end. rec2 defaults to the end of
data in your source.

To apply extraction to an inclusive range of columns only, enter:

EXTRACT source COLUMNS col1 TO col2;

where col1 and col2 define the start and end column positions. Data outside these positions is
ignored. The resulting truncated records are treated as whole records, with col1 becoming the
first column of these new records.

The above keywords are processed in a set order.

First, any start conditions must be satisfied in the sequence:

• STARTA

• STARTF

• RECORDS

SELECTA or SKIPA Select or skip over records which have the condition string
occurring anywhere in the record. You cannot specify a
column position with the SELECTA or SKIPA keywords.

SYNC If this string is found when processing a group, then start
storing data in a new group.

SKIP Skip all records in a group until the condition string is
matched. When this occurs, start storing data in a new group.

Keyword Action
75

ASG-DictionaryManager User’s Guide
after which each record is processed according to this sequence:

• COLUMNS

• ENDA

• ENDF

• RECORDS

• SELECTG

• SYNC

• SKIPS

• SELECTR

• SKIPR

• SKIPG

• SELECTA

• SKIPA

Null Filling Elements of the Output Array
To null fill elements in the output array corresponding to unselected elements in the input data,
enter:

EXTRACT source keyword condition NULL-FILL;

The effect of NULL-FILL is illustrated in these diagrams.

Figure 6. EXTRACT selecting BBBB without NULL-FILL

Figure 7. EXTRACT selecting BBBB NULL-FILL

NULL-FILL can be truncated to N.

AAAA

BBBB
CCCC
DDDD

1
2
3
4
5

BBBB
BBBB

1
2

BBBB

Input data
Output array

AAAA

BBBB
CCCC
DDDD

1
2
3
4
5

BBBB

Input data Output array
Null

BBBB
Null
Null

1
2
3
4
5

BBBB
76

6 Syntax of Commands and Member Types
Importing Empty or Blank Records
To import empty or blank records (in addition to records which have some content), enter:

EXTRACT source ALL-RECORDS;

One cell of the variable created is space-filled for every blank record imported. The number of
spaces in the cell are specified this way:

• If source is an external file, the logical record length of the external dataset from which the
records are being imported

• If source is a command or global variable array, the length of the input variable

• If source is a Manager Products command or executive routine, 1

If you are using the GENERATE keyword to extract data selectively, a variable type of null is
created to indicate the presence of a blank record with no identifiable elements.

Using an Executive Routine
To specify an executive routine to be used, enter:

EXTRACT source USING extract-routine;

where extract-routine is an executive routine you supply to manipulate extracted data. You
can only call one routine, but this can invoke other executive routines.

If you intend to populate your repository with members generated from the extracted data, the
executive routine(s) you use must ensure that specific elements of the extracted information are
stored in mandatory variables, to be used during the reconcile and preview stages of the import
process.

Refer to Chapter 4, "Import Executive Routines and Variables," on page 43 for further details of
executive routines.

Syntax

where:

ddname is the name of an external file or dataset.

�� �EXTRACT

� �EXTERNAL-FILE ddname
SEQUENTIAL
PARTITIONED pds-options

store-rules

COMMAND mpr-command
store-rules

VARIABLE input-var ALL

DISTINCT TO store-var
store-rules

� �

USING extract-routine

�

;
.

77

ASG-DictionaryManager User’s Guide
store-rules may be repeated up to 180 times. This is the syntax:

variables is a delimited string that specifies how extracted data is stored.

separator is a single delimited character that specifies a field separator.

num, c1, c2, r1, r2, and position are integers.

string is a delimited string that specifies a condition.

pds-options are:

member is the name of a partitioned dataset member.

store-var is the name of the variable into which extracted data is stored.

store-rules are as defined above.

mpr-command is a delimited string that gives any executive routine or Manager Products
primary command (except EXTRACT).

input-var is the name of the variable from which input is to be taken.

extract-routine is the name of an executive routine.

� �

GENERATE variables SEPARATOR separator

� �

ARRAYNUM num COLUMNS c1 TO c2

� �

RECORDS r1
TO r2

� �

SELECTA

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

string

SKIPA
STARTA string

POS positionSTARTF

ENDA
ENDF
SKIPG
SKIPR
SELECTG
SELECTR
SYNC
SKIPS

NULL-FILL

� �

ALL-RECORDS

� �MEMBER member
store-rules

DIRECTORY
HEX

TO store-var
78

6 Syntax of Commands and Member Types
POPULATE Command
The POPULATE command populates the repository with the results of the preceding PREVIEW
IMPORT command. Use POPULATE to execute the ADD or REPLACE command and member
definition statements generated by a previous PREVIEW IMPORT command. The statements are
those displayed in the current buffer or filed in a USER-MEMBER.

To execute statements displayed in the current buffer, enter:

POPULATE FROM BUFFER;

The output of the PREVIEW command must be displayed in the current buffer which can be a
Command Mode, Lookaside, Update, or Edit Buffer.

If you want to enter other commands between a PREVIEW and POPULATE command, you can
prefix these other commands with BROWSE or LOOKASIDE and then use QUIT or XQUIT to
return to the output of the PREVIEW command before entering POPULATE.

To execute ADD and REPLACE statements filed in a USER-MEMBER enter:

POPULATE FROM USER user-member-name;

where user-member-name is the name of the USER-MEMBER in which the command and
member definition statements generated by a previous PREVIEW IMPORT command have been
filed.

You can also execute the command and member definition statements by editing the
USER-MEMBER and entering a RUN command or by entering the name of the USER-MEMBER
in the command area.

By prefixing POPULATE with a NOPRINT command you can prevent output from being printed.

Refer to the ASG-ControlManager User’s Guide for details of the commands mentioned above.

Specifying that Statements will form a Logical Unit of Work
You can specify that the command and member definition statements entered in the repository by
the POPULATE command are to be treated as one logical unit of work (LUW).

To specify that all the statements will form one LUW, enter:

POPULATE FROM BUFFER ROLLBACK;

or

POPULATE FROM USER user-member-name ROLLBACK;

By using the ROLLBACK keyword, you can specify that all the statements will form a LUW that
will either update the repository or be rolled back in its entirety, leaving the repository unchanged,
if for any reason any of the statements are unsuccessful.
79

ASG-DictionaryManager User’s Guide
For example, you can avoid a situation where the definition of the parent object is entered in the
repository but the definitions of some of its children are not.

To change the message error level which causes ROLLBACK to occur, enter:

POPULATE FROM BUFFER ROLLBACK LEVEL error-level;

or

POPULATE FROM USER user-member-name ROLLBACK LEVEL error-level;

where error-level can be:

• E, to cause ROLLBACK when error messages occur

• W, to cause ROLLBACK when warning messages and error messages occur

If you do not use the LEVEL keyword, E is the default (so ROLLBACK is not normally caused
when warning messages occur).

Syntax

where:

wbta-options are:

name is the name of a USER-MEMBER on the MP-AID.

wbda-options are:

�� �

wbda-options
POPULATE wbta-options ;

.

� �FROM
ROLLBACK

BUFFER
USER name

LEVEL E

W

� �ENTITIES
PREFIX-USERVIEWS

USERVIEWS

SUFFIX-USERVIEWS
string

� �

AS-MODEL viewset-name
ALL
NAMES names-list
NUMBERS range-list

� �

ALPHABETICALLYALPHABETICALLY USING FORMAT format
80

6 Syntax of Commands and Member Types
string and viewset-name can contain from 1 to 32 characters and must conform to the
Manager Product rules for valid member names.

Note:
If a supplementary USERVIEW member is required for an ENTITY being defined, string is
prefixed or suffixed with the name of the ENTITY to produce the name of the supplementary
USERVIEW. If the resulting name contains more than 32 characters it is reduced.

name-list is a list of names of relations (USERVIEWS) or records (ENTITIES) separated by
commas.

range-list is:

m and n are numbers assigned in the WBDA to relations (USERVIEWS) or records (ENTITIES).
If present, n must be greater than m.

format is the name of a FORMAT member of the modeling repository used by user-formatted
output functions.

wbta-options are provided by generic import functions.

wbda-options are provided by data modeling and design functions.

PREVIEW IMPORT Command
The PREVIEW IMPORT command uses the information on the WBTA—as it has been processed
by previous RECONCILE, RADD, RIGN, RREN, RREP, or RUPD commands—to generate
ADD or REPLACE command- and member-definition statements.

To generate the command- and member-definition statements, enter:

PREVIEW IMPORT;

The member definition statements are generated in the default layouts provided by Manager
Products for each member type. You can create layout rules that suit your repository standards and
invoke them in the USING keyword of the PREVIEW IMPORT command.

The NOTE attribute contains the date and time that the member definition statement was
generated by the PREVIEW command. The ALIAS attribute contains the external object’s name.
The alias type will correspond to the language used in the external environment from which
information about the object was imported.

� �m
TO n

<<<<<< , <<<<<<<<<
81

ASG-DictionaryManager User’s Guide
Information in the NOTE and ALIAS attributes of the existing member is incorporated in those of
the proposed member. The single ALIAS attribute generated could contain different aliases of the
same alias type. You must edit the member definition statement generated by the PREVIEW
command and change one of the aliases.

If the definition is to replace an existing member then certain default common attributes of the
existing member are incorporated in the definition, unless you have specified the
NO-COMMON-CLAUSES keyword in a previous RECONCILE command.

PREVIEW IMPORT processes members on the WBTA in the same order as they are listed on the
Reconciliation Report generated by the previous RECONCILE command. A proposed member
can appear more than once in a Reconciliation Report, but the PREVIEW IMPORT command
only generates one command and member definition statement for each member.

For example, you could import information about two tables which share a column of the same
name. The shared column would appear twice on the reconciliation report but only one command
and member definition statement would be generated to document it in the repository.

A member whose definition is not generated, because:

• It has been ignored by a previous RECONCILE command

• It has already been generated in the current PREVIEW IMPORT output

is indicated by comments. These comments help you to relate the PREVIEW output with the
previous reconciliation report.

The generated statements can be printed, filed in a USER-MEMBER on the MP-AID, or both
printed and filed.

To file the generated statements in a USER-MEMBER you must specify an ONTO keyword in the
PREVIEW IMPORT command.

By filing the command- and member-definition statements in a USER-MEMBER, you can hold
them across Manager Products sessions and edit the generated statements in the edit buffer.

You can subsequently enter the statements in the repository using the POPULATE command.

Generating Member Definition Statements in Your Own Layouts
You can tailor the PREVIEW IMPORT command so that it generates member definition
statements in layouts which suit your repository standards.

To generate member definition statements in your own layouts, enter:

PREVIEW IMPORT USING layout-executive;

where layout-executive is an executive routine that invokes other executive routines that
each determine the layout of member definition statements generated for a particular member
type.

Alternatively, you can tailor the executive routines in Manager Product’s default layout rules.
82

6 Syntax of Commands and Member Types
Filing Generated Output in a USER-MEMBER
To automatically file generated output in private or public USER-MEMBERs on the MP-AID,
enter:

PREVIEW IMPORT ONTO member-type member-name options;

where:

member-type is the type of USER-MEMBER which will hold the generated output:
USER-MEMBER, PUBLIC-USER-MEMBER, or PRIVATE-USER-MEMBER, to file
output in a public or private USER-MEMBER (USER-MEMBER is private).

When appending or replacing the contents of an existing member the user who created that
member can change it from private to public, or the reverse, by specifying either PRIVATE
or PUBLIC. Users with different logon identifiers can create private USER-MEMBERs
with the same names.

member-name is the name of the USER-MEMBER.

options define how the output is to be filed. These are the keywords:

— NEW (the default), APPEND, or REPLACE, to create a new member, append to an
existing member, or replace an existing member. If you specify NEW, and the member
already exists, the output will not be generated. If you specify APPEND or REPLACE,
and the member does not already exist, a new member is created.

— PRINT (the default), to print the full output, or NOPRINT, to print messages and impact
analysis reports only.

Syntax

where wbta-options are:

layout-executive is the name of an executive routine.

destination is:

name is the name of a USER-MEMBER on the MP-AID.

�� �

wbda-clause

PREVIEW IMPORT ;
.wbta-options

�

� �

USING layout-executive ONTO destination

� �PRIVATE-USER-MEMBER name
PUBLIC-USER-MEMBER
USER-MEMBER

NEW
APPEND
REPLACE

� �
PRINT
NOPRINT
83

ASG-DictionaryManager User’s Guide
wbda-clause is:

string, viewset-name can contain from 1 to 32 alphanumeric characters and must conform
to the Manager Product rules for valid member names.

Note:
If a supplementary USERVIEW member is required for an ENTITY being defined, string is
concatenated (either as a prefix or a suffix) with the name of the ENTITY to produce the name of
the supplementary USERVIEW. If this resulting name contains more than 32 characters, it is
truncated.

name-list is a list of names of relations (USERVIEWS) or records (ENTITIES) separated by
commas.

range-list is:

where m and n are numbers assigned in the WBDA to relations (USERVIEWS) or records
(ENTITIES). If present, n must be greater than m.

format is the name of a FORMAT member of the modeling repository. FORMAT members are
used by User Formatted Output functions.

Note:
The PREVIEW IMPORT command is provided by generic import functions. The wbda-clause
is provided by data modeling and design functions.

RADD
Use RADD to specify that you want a proposed member documenting an external object to be
added to the repository.

To use the RADD line command, enter:

RADD

� �ENTITIES
PREFIX-USERVIEWS

USERVIEWS

SUFFIX-USERVIEWS
string

� �

AS-MODEL viewset-name
ALL
NAMES names-list
NUMBERS range-list

� �

ALPHABETICALLYALPHABETICALLY USING FORMAT format

� �
TO n

m
<<<<<<<<<,<<<<<<<<
84

6 Syntax of Commands and Member Types
in the line command area alongside the proposed member’s identification number in the
reconciliation report.

To use the RADD primary command, enter:

RADD n;

in the command area.

where n is the proposed member’s identification number in the reconciliation report.

The reconciliation report is displayed by the RECONCILE command. To display the changes you
have made with the RADD command enter a further RECONCILE command.

The effects of the two forms of the RADD command are the same but you can only enter line
commands when working in an interactive environment. You can enter several RADD line
commands at the same time.

If a member with the same name as a proposed member already exists in the repository and you
specify RADD, it will be taken to mean replace.

You can also specify that you want a proposed member to be added to the repository by including
an ADDING keyword in the RECONCILE command.

Refer to the RECONCILE command for full details of adding proposed members.

Syntax (Line Command)

Syntax (Primary Command)

where n is a proposed member’s identification number in a reconciliation report.

RECONCILE Command
The RECONCILE command uses translation rules to generate proposed members from the
information about external objects placed on the WBTA by the EXTRACT command.

You can override the translation rules by specifying an ADDING, IGNORING,
NO-COMMON-CLAUSES, RENAMING, or REPLACING keyword in a RECONCILE
command.

You can also tailor the Manager Products default translation rules or create your own translation
rules and invoke them in the USING keyword of a RECONCILE command.

� � �RADD �

� � �RADD n �;
.

85

ASG-DictionaryManager User’s Guide
A member name and member type are generated for the proposed members. A form-description
and (depending on the data type of the column it is documenting) a USAGE attribute are generated
for proposed members which have an ITEM member type.

The RECONCILE command does not update the repository, but rather specifies the updates you
intend to make. These updates are determined by the current contents of the repository. A
proposed member will be added to the repository unless a member (other than a dummy member
without a source record) of the same name already exists.

Existing ITEM members will be replaced by proposed members whose definitions contain
additional form descriptions. The form descriptions of the existing member are included in the
definition of the proposed member.

In all other cases, if a proposed member has the same name as an existing member, it will not be
updated.

The RECONCILE command can be entered any number of times. Any Manager Products
instruction other than LOGOFF or RELEASE GLOBAL can be entered between RECONCILE
commands. If you specify an EXTRACT command between RECONCILE commands then the
information on the WBTA is replaced and subsequent RECONCILE commands will apply to the
latest and not the previously imported information.

The first RECONCILE command generates the proposed members. Subsequent RECONCILE
commands can both change the proposed members and, subject to member type checks, specify
whether or not they are to be entered in the repository. You can also regenerate the proposed
members by entering a RECONCILE command including an INITIALIZE keyword. The
proposed members are regenerated according to the translation rules and any changes you have
made to the proposed members previously generated are abandoned. A Reconciliation Report is
displayed by each RECONCILE command. The report compares the proposed members with
existing repository members which have the same name.

You can use the reconciliation report to reconcile the proposed and existing repository members
with one another. You can also use the RADD, RIGN, RREN, RREP, and RUPD commands
during reconciliation. In an interactive environment, these can be line commands or primary
commands.

The reconciliation report displays the condition of the existing members at the time the proposed
members were generated or regenerated. Reconciliation reports displayed in response to
subsequent RECONCILE commands not including an INITIALIZE keyword will display any
changes you have made to the proposed members but will not display any changes in the condition
of the existing members.

The Systems Administrator can define member type checks that specify the types of existing
members to which all the proposed members documenting a parent object and its children can
refer. A check can fail, partially fail, or pass.

If the check fails, the proposed member and all other members in the parent-children set cannot be
added to the repository. This condition is indicated by an error message in the reconciliation report
and you cannot override it with an RADD, RECONCILE ADDING, RREP, or RECONCILE
REPLACING command.
86

6 Syntax of Commands and Member Types
If the check partially fails, the proposed member can be added to the repository but a warning
message in the reconciliation report indicates the partial failure.

If the check passes, then the proposed members can be added to the repository as normal.

For example, your Systems Administrator could specify that columns in tables should preferably
be documented in ITEM members but can be documented in GROUPs. This check will fail if an
existing SYSTEM member has the same name as a proposed member documenting a column but
will only partially fail if the existing member is a GROUP.

Member type checking enables you to take early action to ensure that proposed members will not
fail to encode, due to a reference to an existing member with an invalid member type, when the
repository is populated.

When a member type check failure occurs, you can rename the offending proposed member to a
name that does not exist in the repository or to an existing member name that does not cause a
further check failure. A RECONCILE RENAMING command rechecks all the proposed members
in the parent-children set.

The updates to be made to the repository are determined by the contents of the current or next
visible status. The reconciliation report displays the condition of the existing members in the
current or next visible status. If you change statuses, the report will continue to display the
members as they are visible from the previous status unless you regenerate the proposed members
by specifying an INITIALIZE keyword.

Regenerating Proposed Members

To regenerate the proposed members documenting external objects, enter:

RECONCILE INITIALIZE;

The proposed members are regenerated according to the default translation rules. Any changes
you have made to the previously generated members (for example renaming them) are abandoned.
The reconciliation report will display the current condition of any repository member whose name
is the same as a proposed member.

Tailoring How Proposed Members are Generated
To tailor the RECONCILE command so that it generates proposed members which suit your
repository standards, enter:

RECONCILE INITIALIZE USING translation-rule-name-list;

where translation-rule-name-list is a list of one or more executive routines each
separated by a comma. The executive routines must be listed in the order they are to be executed.

For example, if Manager Product’s default naming rules for proposed members do not suit your
repository standards you can create executive routines specifying alternative rules. Alternatively,
you can tailor the executive routines in the Manager Products default translation rules.
87

ASG-DictionaryManager User’s Guide
Stopping Proposed Members being Entered in the Repository
To ignore a selection of proposed members so that they are not subsequently entered into the
repository, enter:

RECONCILE IGNORING selection;

where selection specifies which of the proposed members are to be ignored. Refer to
"Selecting Members to be Ignored, Added, or Replaced" on page 90 for details of selection.

The reconciliation report will indicate that a proposed member is to be ignored.

You can also use the RIGN command to ignore proposed members.

You cannot ignore proposed members documenting referenced objects.

Adding Proposed Members
To specify that you want a selection of proposed members to be added to the repository (and not
ignored), enter:

RECONCILE ADDING selection;

where selection specifies which of the proposed members you want to be added to the
repository. Refer to "Selecting Members to be Ignored, Added, or Replaced" on page 90 for details
of selection.

Existing members with the same name as proposed members will be replaced as a result of a
RECONCILE ADDING command.

You can also specify that a proposed member will replace an existing member by entering a
RECONCILE REPLACING or RREP command.

You can rename proposed members by entering a RECONCILE RENAMING or RREN
command.

If member type checking has been enabled by your Systems Administrator and you want to
replace an existing member with a proposed member, then the member type of the existing
member is checked against a set of allowed proposed member types. If the check fails, the
command will not be executed.

The reconciliation report will indicate that the proposed members will be added to the repository
as a new member or replace an existing member.

You can also use the RADD command to specify which proposed members are to be added to the
repository.

You cannot specify that proposed members documenting referenced objects are to be added to the
repository. Referenced objects are added to the repository as dummy members by a reference from
the member documenting the parent object, if these members are not already present on the
repository.
88

6 Syntax of Commands and Member Types
Replacing Existing Members with Proposed Members
To specify that you want a selection of proposed members to replace existing repository members,
enter:

RECONCILE REPLACING selection;

where selection specifies which proposed members are to replace existing members. Refer to
"Selecting Members to be Ignored, Added, or Replaced" on page 90 for further details of
selection.

The reconciliation report will indicate which of the proposed members are to replace existing
repository members.

You can also use the RREP command to specify which proposed members are to replace existing
members.

If member type checking is enabled by your Systems Administrator, then the member type of the
existing member being replaced is checked against a set of allowed proposed member types. If the
check fails, the command is not executed.

You cannot specify that proposed members documenting referenced objects are to replace existing
repository members. A relationship is created in the repository between the proposed member
documenting the parent object and the existing member.

Renaming Proposed Members
To rename a selection of proposed members, enter either:

RECONCILE RENAMING MEMBER member-name-1 AS member-name-2;

or

RECONCILE RENAMING NUMBER n AS member-name-2;

where:

member-name-1 is the current name of the proposed member.

member-name-2 is the new name.

n is the proposed member’s identification number in the reconciliation report.

You can rename several proposed members with one RECONCILE command by repeating the
MEMBER and NUMBER keywords. The reconciliation report will display the new member
names of the proposed members.

If a proposed member appears more than once in the same reconciliation report then a
RECONCILE command including a MEMBER keyword will rename all occurrences of the
proposed members in the report.
89

ASG-DictionaryManager User’s Guide
If member-name-2 is the same as the name of another proposed member in the reconciliation
report, then the command will be rejected. If it is the same as the name of an existing member,
then the existing member is displayed in the reconciliation detailed report.

If you rename children, then the proposed member documenting the parent object will refer to the
children by their new names.

You may want to rename a proposed member if:

• It has the same name as an existing member

• Its name does not suit your naming standards

• It has failed or partially failed member type checking

You can create your own naming rules and invoke them in the USING keyword of a RECONCILE
command or tailor the executive routines in the Manager Products supplied naming rules. You can
also use the RREN command to rename proposed members.

Selecting Members to be Ignored, Added, or Replaced
You can select which proposed members you want to be ignored, added to the repository or
replace existing repository members.

To select proposed members by their member type, enter:

RECONCILE update TYPE member-type-list;

where:

update is IGNORING, REPLACING, or ADDING.

member-type-list is a list of member types each separated by a comma.

To select proposed members by their member name, enter:

RECONCILE update MEMBER member-name-list;

where member-name-list is a list of member names each separated by a comma.

To select proposed members by their identification number in the reconciliation report, enter:

RECONCILE update NUMBER id-number-list;

where id-number-list is a list of identification numbers each separated by a comma.

To select all proposed members, enter:

RECONCILE update GROUP ALL;
90

6 Syntax of Commands and Member Types
To select those proposed members which have the same name as an existing repository member,
enter:

RECONCILE update GROUP DUPLICATES;

The different updates and selections can be combined in a single RECONCILE command. For
example, to specify that:

• Proposed members will replace existing repository members which have the same member
name

• Proposed members with a member type of MODULE and the proposed member with the
member name IT-DEPT-NAME will not be entered in the repository

enter:

RECONCILE REPLACING GROUP DUPLICATES IGNORING TYPE MODULE MEMBER
IT-DEPT-NAME;

Excluding Common Clauses from the Definition of Proposed Members
To stop the default common attributes of existing repository members being incorporated in
proposed members which are replacing them, enter:

RECONCILE NO-COMMON-CLAUSES;

You can specify with a RECONCILE REPLACING or RREP command that a proposed member
is to replace an existing repository member.

If you do not enter a RECONCILE command including the NO-COMMON-CLAUSES keyword
then the ADMINISTRATIVE-DATA, ALIAS, COMMENT, DESCRIPTION, and NOTE default
common attributes of the existing repository member are incorporated in the definition of the
proposed member replacing it.

Proposed members always have a NOTE and an ALIAS attribute. The attributes are displayed in
the member definition statements generated for the proposed members by a subsequent PREVIEW
command. The NOTE attribute gives the time and date the statement was generated. The ALIAS
attribute gives the name of the external object the definition is documenting.

If the default common attributes of the existing member are updated after the proposed members
were last generated by the RECONCILE command then the updates are not reflected in the
member definition statements generated by the PREVIEW command.

Specifying the Type of Reconciliation Report you want Displayed
You can specify the type of reconciliation report you want to be displayed by a RECONCILE
command.

To display a summarized reconciliation report, enter:

RECONCILE LIST SUMMARY;
91

ASG-DictionaryManager User’s Guide
To display a detailed reconciliation report, enter:

RECONCILE LIST DETAILS;

To display both a detailed and a summarized reconciliation report, enter:

RECONCILE LIST BOTH;

The summarized report is displayed by default.

To display a detailed reconciliation report excluding certain information about the relationships
between objects, enter:

RECONCILE LIST DETAILS NO-XREF;

If you specify the NO-XREF keyword then these are not displayed in the detailed reconciliation
report:

• The table listing the children of the parent object

• The Also Referred To By Entry which indicates that children are shared by more than one of
the parent objects on which information has been imported

A Description of the Reconciliation Summary Report
A reconciliation summary report lists the proposed members documenting the external objects
about which information has been imported.

The ID column contains the unique identification number of the proposed members. The
identification number specifies the order in which information about each object was imported.
This order is determined by the object’s type. The numbering in the report is not in sequence if
there is more than one parent object because information on several objects of the same type is
imported. Parent objects have the lowest identification numbers and are followed in the report by
their children.

The Proposed Member Name column contains the name of the proposed members.

The Type column contains the member type of the proposed members.

The Upd column specifies how the repository is to be updated with the proposed members. If
ADD is specified, the proposed member is to be added to the repository. If REP is specified the
proposed member is to replace an existing member in the repository. If IGN is specified the
proposed member is not to be entered in the repository. An asterisk (*) indicates that the proposed
member is a referenced object and is added to the repository as a dummy member by a reference
from the member documenting the parent object (if the member does not already exist).
92

6 Syntax of Commands and Member Types
Initially:

• IGN is specified if there is an existing member with the same name as the proposed
member.

• REP is specified if the proposed member is an ITEM member with a form description not
included in the existing member.

• ADD is specified if there is no existing member.

The Condition column shows whether there is an existing repository member with the same name
as the proposed member and if it is a dummy, encoded, unverified, or protected member. If the
column is blank no member of the same name exists. *NO AUTH is displayed if you do not have
the authority to access the existing member. The entries in the Condition column are otherwise the
same as those displayed in the Condition column of LIST command output.

If the Systems Administrator has enabled member type checking and a proposed member fails the
check, the error message DM05784E is displayed. If a proposed member partially fails the check,
the warning message DM05784W is displayed.

Refer to the ASG-Manager Products Dictionary/Repository User’s Guide for details of the LIST
command.

An Example of the Reconciliation Summary Report
This is an example reconciliation summary report:

A Description of the Reconciliation Detailed Report
A reconciliation detailed report is divided into different sections for each external object about
which information has been imported. Each object has a unique identification number which
specifies the order in which information about it was imported. This number is the same as the
number in the summary report.

The entries following Extracted give the name and type of the external object.

The entries following Refers to give the name and type of a referenced object.

Reconciliation summary report for extract of table AAW.SALES from DB2.

ID Proposed Member name Type Upd Condition

1 TB-AAW-SALES DB2-TABLE ADD
2 US-AAW DB2-USER IGN SCE ENC
3 TS-NORTH DB2-TBSPACE *
4 IT-QTY ITEM ADD * DUM
5 IT-DESCRIPTION ITEM IGN SCE ENC
6 IT-DELIVERY ITEM ADD
7 IT-PRICE ITEM REP SCE ENC

93

ASG-DictionaryManager User’s Guide
The entries following Proposed give the member name and member type of the proposed member
documenting the external object and indicate whether the member is to be added to the repository,
replace an existing dictionary member, or be ignored. Proposed members documenting referenced
objects are indicated by an asterisk (*).

If a proposed member is an ITEM, then its form description (depending on the data type of the
column it defines), USAGE attribute, and version are also displayed.

The entries following Dictionary give information about the condition (encoded, dummy, or
unverified) and member type of any repository member with the same name as the proposed
member. If the existing member is an ITEM then all versions of its form-description and their
associated USAGE attributes are displayed. *NO AUTH is displayed if you do not have the
authority to access the existing member.

The section reporting the parent object is followed by a list of the children (including referenced
objects) on which information has been imported.

If information has been imported from more than one parent object and they share the same
children this is indicated by an Also Referred To By Entry in the sections reporting the shared
children.

If the Systems Administrator has enabled member type checking and a proposed member fails the
check, the error message DM05784E is displayed. If a proposed member partially fails the check
the warning message DM05784W is displayed.

An Example of the Reconciliation Detailed Report
This is an example reconciliation detailed report:
94

6 Syntax of Commands and Member Types
Syntax

Reconciliation detailed report for extract of table AAW.SALES from DB2.
**

1 Extracted... SALES TABLE
Proposed.... TB-AAW-SALES DB2-TABLEADD

------------- 6 CHILDREN extracted with AAW.SALES ---------------

1 CREATOR
1 DBSPACE
4 COLUMNS

2 Extracted... AAW CREATOR

Proposed.... US-AAW DB2-USERGIGN
Dictionary.. SCE ENC DB2-USER

3 Refers to... NORTH TABLESPACE

Proposed.... TS-NORTH DB2-TBSPACE*

4 Extracted... QTY COLUMN

Proposed.... IT-QTY ITEM ADD
Dictionary.. * DUM ITEM

5 Extracted... DESCRIPTION COLUMN

Proposed.... IT-DESCRIPTION ITEM IGN
Form desc.. CHARACTERS 5 VERSION 1
Dictionary.. SCE ENC ITEM
Version 1.. HELD-AS CHARACTERS 5
Version 2.. ENTERED-AS CHARACTERS 4

6 Extracted... COST COLUMN

Proposed.... IT-DELIVERY ITEM ADD
Form desc.. CHARACTERS 10 USAGE DATEVERSION 1

7 Extracted... PRICE COLUMN

Proposed.... IT-PRICE ITEM REP
Form desc.. NUMERIC 6 VERSION 3
Dictionary.. SCE ENC ITEM
Version 1.. HELD-AS CHARACTERS 5
Version 2.. ENTERED-AS CHARACTERS 4

�� �RECONCILE �

initialize-clause

� �
NO-COMMON-CLAUSESNO-COMMON-CLAUSES

IGNORING selection

<<<<<<<

� �

ADDING selection

<<<<<<<
REPLACING selection

<<<<<<<

� �

RENAMING
<<<<<<<<<<<<<<<<<<<<,<<<<<<<<<<<<<<<<<<

NUMBER n
MEMBER member-name

AS member-name2
95

ASG-DictionaryManager User’s Guide
where:

initialize-clause is:

translation-rule-name is the name of an executive routine.

selection-clause is:

member-type is the member type of a proposed member.

member-name is the name of a proposed member.

n is a proposed member’s identification number in a reconciliation report.

RIGN
Use RIGN to specify that you do not want a proposed member documenting an external object to
be entered in the repository.

To use the RIGN Line Command, enter:

RIGN

in the line command area alongside the proposed member’s identification number in the
reconciliation report.

To use the RIGN primary command, enter:

RIGN n;

in the command area.

where n is an integer identifying the proposed member’s identification number in the
reconciliation report.

� �

LIST

�;
.SUMMARY

DETAILS
BOTH

NO-XREF
NOXREF

� �

USING translation-rule-name

<<<<<<<<<<,<<<<<<<<<
INITIALIZE

� �

TYPE member-type
GROUP ALL

DUPLICATES

<<<<<<,<<<

� �

MEMBER member-name
<<<<<<,<<<

NUMBER n
<,<
96

6 Syntax of Commands and Member Types
The effects of the two forms of the RIGN command are the same but you can only enter line
commands when working in an interactive environment. You can enter several RIGN line
commands at the same time.

The reconciliation report is displayed by the RECONCILE command. To display the changes you
have made with the RIGN command enter a further RECONCILE command.

You can also specify that you want a proposed member to be ignored by including an IGNORING
keyword in the RECONCILE command.

Refer to the RECONCILE command for full details of ignoring proposed members.

Syntax (Line Command)

Syntax (Primary Command)

where n is a proposed member’s identification number in a reconciliation report.

RREN
RREN renames a proposed member during reconciliation.

To use the RREN line command, enter:

RREN

in the line command area alongside the proposed member’s identification number in the
reconciliation report.

To use the RREN primary command, enter:

RREN n;

in the command area.

where n is an integer identifying the proposed member’s identification number in the
reconciliation report.

The effects of the two forms of the RREN command are the same but you can only enter line
commands when working in an interactive environment. You can enter several RREN line
commands at the same time.

� � �RIGN �

� � �RIGN n �;
.

97

ASG-DictionaryManager User’s Guide
A dialog buffer in which you specify the new name of the proposed member is displayed in
response to each RREN command.

The reconciliation report is displayed by the RECONCILE command. To display the changes you
have made with the RREN command enter a further RECONCILE command. You can also
rename a proposed member by including a RENAMING keyword in a RECONCILE command.

Note:
This command cannot be performed on a referred object.

Refer to the RECONCILE command for full details of renaming proposed members.

Syntax (Line Command)

Syntax (Primary Command)

where n is a proposed member’s ID number in a reconciliation report.

RREP
RREP specifies that a proposed member documenting an external object replaces an existing
repository member.

To use the RREP line command, enter:

RREP

in the line command area alongside the proposed member’s identification number in the
reconciliation report.

To use the RREP primary command, enter:

RREP n;

in the command area.

where n is an integer identifying the proposed member’s identification number in the
reconciliation report.

The effects of the two forms of the RREP command are the same but you can only enter line
commands when working in an interactive environment. You can enter several RREP line
commands at the same time.

� � �RREN �

� � �RREN n �;
.

98

6 Syntax of Commands and Member Types
The reconciliation report is displayed by the RECONCILE command. To display the changes you
have made with the RREP command enter a further RECONCILE command.

You can also specify that you want a proposed member to replace an existing repository member
by including a REPLACING keyword in the RECONCILE command.

Refer to the RECONCILE command for full details of replacing existing members with proposed
members.

Syntax (Line Command)

Syntax (Primary Command)

where n is a proposed member’s ID number in a reconciliation report.

RUPD
RUPD updates an existing repository member from a reconciliation report in order to interactively
change its source record.

To use the RUPD line command, enter:

RUPD

in the line command area alongside the identification number in the reconciliation report of the
proposed member with the same name as the existing member.

To use the RUPD primary command, enter:

RUPD n;

in the command area.

where n is the identification number in the reconciliation report of a proposed member with the
same name as an existing member.

The reconciliation report is displayed by the RECONCILE command. To display the changes you
have made with the RUPD command enter a further RECONCILE command including the
INITIALIZE keyword.

� � �RREP �

� � �RREP n �;
.

99

ASG-DictionaryManager User’s Guide
The effects of the two forms of the RUPD command are the same. The RUPD command opens a
buffer in Update mode containing a copy of the source record of the selected repository member
which you can then update interactively. You can only enter RUPD commands when working in
an interactive environment.

If the selected member is an ITEM, you can copy the form-description and USAGE attribute of the
proposed member into the update buffer. To do this, use the I, F, and P line commands in a
command interface environment, or the X, A, and B line commands in a panel interface
environment.

To enter the contents of the buffer into the repository use the FILE or SFILE commands. To
abandon the update without adding the contents to the repository use the QUIT or XQUIT
commands.

You can enter several RUPD line commands at the same time. The different update buffers are
stacked. Use the QUERY ACTIVE-BUFFERS command to find out which buffers you have
opened. The number of update buffers you can stack is determined by the buffer limit set in the
repository by the Systems Administrator. Use the QUERY BUFFER-LIMIT command to find out
the buffer limit.

Note:
The line commands only copy the form-description and USAGE attribute of the proposed member
corresponding to the existing member at the top of the buffer stack.

Having filed or quit the update buffer, you will go to an update buffer lower in the buffer stack or
return to the reconciliation report.

The current status must be an update status. If the member does not exist in the current status, then
the RUPD command copies the source record of the member from the next visible status in which
it does exist. If you subsequently FILE or SFILE the member it is entered in the current status.

Refer to the ASG-ControlManager User’ Guide for details of the FILE, SFILE, QUIT, XQUIT, I,
F, P, and QUERY commands.

Refer to the ASG-MethodManager Workstation User’s Guide for details of the X, A, and B line
commands.

Syntax (Line Command)

Syntax (Primary Command)

where n is a proposed member’s ID number in a reconciliation report.

� � �RUPD �

� � �RUPD n �;
.

100

6 Syntax of Commands and Member Types
TRANSLATE Command
This is the full syntax for the DictionaryManager TRANSLATE command.

where:

name is the name of the KEPT-DATA list of members selected for translation.

member-type is a member type interrogation keyword valid on the current dictionary.
This may be any valid basic member type or any UDS member type based on the basic
member types.

member-name is the name of the dictionary member to be translated.

mp-user is the name of an MP-AID to be used for a USER-MEMBER. The name must be
no more than 10 characters long. A public USER-MEMBER can be accessed by someone
with a different logon ID; a private member cannot.

mp-tr-rule is the name of a TR-RULE member on the MP-AID. An mp-tr-rule
specified here will override any default established by a previously issued SET command.
The SET command is related to the target dictionary and member type to which you are
translating, and is defined separately for each target dictionary system.

If the MEMBER clause is specified, the USING clause is required.

The PRINT option causes the USER-MEMBER holding the translated source to print
automatically.

Refer to "Using the TRANSLATE Command" on page 34 for details of the TRANSLATE
command.

TRANSLATE MANAGER-DICTIONARY
[KEPT [IN name]] [GENERIC] member-type
MEMBER member-name

TO IDD
IDMS
OTHER-DICTIONARY

ONTO PUBLIC
PRIVATE

REPLACE
APPEND

mp-user []

[USING mp-tr-rule] [PRINT] ;
.

101

ASG-DictionaryManager User’s Guide
TRANSFER Command
This is the full syntax of the DictionaryManager TRANSFER command.

where:

mp-user is the name of a USER-MEMBER on the MP-AID that holds the source input
statements for the target dictionary.

filename is the name of the output source library dataset. It is the logical file name
(ddname or dtfname) used in job control statements to indicate the external dataset name
(physical file name) of the file to which the USER-MEMBER is to be copied.

control-card is a character string of up to 72 characters that is a library system control
card image. Trailing spaces are implied. A single question mark (?) may be used to indicate
the point at which the generated library member name is to be inserted in the control card.

library-name is the name to be given to the generated library member in the output
dataset. The name must not be more than 16 characters long. The first character must be
alphabetic, #, £, %, @, or a local currency symbol with the internal hex code 5B.

The order of the FROM USER-MEMBER and TO FILE clauses can be reversed.

PARTITIONED applies to the OS environment and defines the dataset to be a BPAM partitioned
dataset.

SEQUENTIAL defines the dataset to be a QSAM sequential dataset

The AS clause declares a name under which the copied source statements are to be catalogued in
the output source library dataset. If you omit this, library-name defaults to the name of the
MP-AID USER-MEMBER being transferred.

TRANSFER
FROM USER-MEMBER mp-user [LOGON logon-id]
TO FILE filename PARTITIONED

SEQUENTIAL ['control-card']

[AS library-name] ;
;

102

Appendix A

Importing a COBOL Program
Introduction

This appendix is an example of importing from an external source. The standard four stages of the
import procedure (extract, reconcile, preview, and populate) are shown. The example starts by
extracting a COBOL program (held as a CMS file), and finishes by adding members representing
that program to the repository.

The example external file and the example import executive routines described below are
available in your Manager Products demonstration repository (status MPL). By constructing the
executive routines onto the MP-AID and moving the example external file into a real external file
you can actually perform the following example.

Refer to Chapter 1, "Introduction to DictionaryManager," on page 1 for details of the import
procedure.

Refer to "Executive Routine Listings" on page 108 for listings of the example import executive
routines.

Refer to "The Example External File" on page 122 for listing of the external file itself.

The Extract Stage

First define the ddname of the file to extract:

CMS FILEDEF COBIN DISK SDD11 COBOL A;

Next enter the EXTRACT command, specifying the input source (an external file), the ddname of
the file, and the extract executive routine:

EXTRACT EXTERNAL-FILE COBIN USING UEXT001;
103

ASG-DictionaryManager User’s Guide
Output from the above command would be:

+---+
DM05702I EXTRACTED 1 PARENT OBJECT(S) FROM EXTERNAL FILE
DM05703I EXTRACTED PROGRAM SDD11

--+

The example extract executive routine consists of nested routines to extract information from the
PROCEDURE DIVISION of a COBOL program.

Figure 8 on page 104 illustrates the structure of the executive routine.

Figure 8. Structure of the Example Extract Executive Routine

The Reconcile Stage

After extracting data, enter the RECONCILE command, specifying the reconcile executive routine
UREC001 to be used:

RECONCILE INITIALIZE USING UREC001;

Refer to "UREC001" on page 119 for a listing of the reconcile executive routine UREC001.

UEXT001
(control)

UEXT004
processes
program ID

UEXT005
finds
Procedure
Division

UEXT002
gets
"USING"
variables

UEXT003
gets
next
word

UEXT006
processes
ENTRY
statements

UEXT002 UEXT003

UEXT007
processes
"CALL"
statements

UEXT002 UEXT003
104

Appendix A - Importing a COBOL Program
Output from the above command would be:

+---+

Reconciliation summary report
for extract of SDD11 from EXTERNAL FILE.

ID Proposed Member name Type Upd Condition

1 PG-SDD11 PROGRAM ADD
2 GR-XMR-DATA GROUP * * DUM
3 GR-DMR-INTERFACE GROUP * * DUM
4 GR-DOUTPUT GROUP * * DUM
5 GR-DICTIONARY-INPUT-LINES GROUP * * DUM
8 GR-PCBNAME GROUP * * DUM
9 MO-SMU12 MODULE * * DUM
11 GR-MESSAGE-DETAILS GROUP * * DUM
12 GR-PERFORM GROUP * * DUM
29 MO-MPSCI MODULE * * DUM

+---+

The Preview Stage

Next enter the PREVIEW command specifying the preview executive routine UPRE001 to be
used:

PREVIEW IMPORT USING UPRE001;

Refer to "UPRE001" on page 120 for a listing of the preview executive routine UPRE001.
105

ASG-DictionaryManager User’s Guide
Output from the above command would be:

; --
PG-SDD11
ADD PG-SDD11;
PROGRAM
ALIAS

COBOL "SDD11"
NOTE
"This member was extracted by SYSDB2 at 10.17.03 on 30 MAR 1990"
"This member was extracted by SYSDB2 at 11.18.30 on 16 MAR 1990"

ENTRY " "
PARAMETERS GR-XMR-DATA

,GR-DMR-INTERFACE
,GR-DOUTPUT
,GR-DICTIONARY-INPUT-LINES

ENTRY "ABCDEFGH"
PARAMETERS GR-DMR-INTERFACE

,GR-DOUTPUT
ENTRY "PQRSTUVW"
PARAMETERS GR-PCBNAME
CALLS MO-SMU12
PASSING GR-XMR-DATA

,GR-MESSAGE-DETAILS
,GR-PERFORM

CALLS MO-SMU12
PASSING GR-XMR-DATA

,GR-MESSAGE-DETAILS
,GR-PERFORM

CALLS MO-SMU12
PASSING GR-XMR-DATA

,GR-MESSAGE-DETAILS
,GR-PERFORM

CALLS MO-SMU12
PASSING GR-XMR-DATA

,GR-MESSAGE-DETAILS
,GR-PERFORM

CALLS MO-SMU12
PASSING GR-XMR-DATA

,GR-MESSAGE-DETAILS
,GR-PERFORM

CALLS MO-MPSCI
PASSING GR-DMR-INTERFACE

,GR-DOUTPUT
,GR-DICTIONARY-INPUT-LINES

;

106

Appendix A - Importing a COBOL Program
The Populate Stage
Finally, add the proposed definitions to the dictionary, by entering this command:

POPULATE FROM BUFFER;

Output from the above command would be:

DM00700I DICTIONARY ... SUCCESSFULLY DEFINED
DM01221I PG-SDD11 EXISTS IN STATUS AS A PROGRAM
DM01132I PG-SDD11 SUCCESSFULLY REPLACED
DM01296I ENCODING OF PG-SDD11

00100 PROGRAM
00200 ALIAS
00300 COBOL "SDD11"
00400 NOTE
00500 "This member was extracted by SYSDB2 at 10.17.03 on

30 MAR 1990"
00600 "This member was extracted by SYSDB2 at 11.18.30 on

16 MAR 1990"
00700 ENTRY " "
00800 PARAMETERS GR-XMR-DATA
00900 ,GR-DMR-INTERFACE
01000 ,GR-DOUTPUT
01100 ,GR-DICTIONARY-INPUT-LINES
01200 ENTRY "ABCDEFGH"
01300 PARAMETERS GR-DMR-INTERFACE
01400 ,GR-DOUTPUT
01500 ENTRY "PQRSTUVW"
01600 PARAMETERS GR-PCBNAME
01700 CALLS MO-SMU12
01800 PASSING GR-XMR-DATA
01900 ,GR-MESSAGE-DETAILS
02000 ,GR-PERFORM
02100 CALLS MO-SMU12
02200 PASSING GR-XMR-DATA
02300 ,GR-MESSAGE-DETAILS
02400 ,GR-PERFORM
02500 CALLS MO-SMU12
02600 PASSING GR-XMR-DATA
02700 ,GR-MESSAGE-DETAILS
02800 ,GR-PERFORM
02900 CALLS MO-SMU12
03000 PASSING GR-XMR-DATA
03100 ,GR-MESSAGE-DETAILS
03200 ,GR-PERFORM
03300 CALLS MO-SMU12
03400 PASSING GR-XMR-DATA
03500 ,GR-MESSAGE-DETAILS
03600 ,GR-PERFORM
03700 CALLS MO-MPSCI
107

ASG-DictionaryManager User’s Guide
03800 PASSING GR-DMR-INTERFACE
03900 ,GR-DOUTPUT
04000 ,GR-DICTIONARY-INPUT-LINES

DM01280I PG-SDD11 SUCCESSFULLY ENCODED
DM00701I DICTIONARY ... SUCCESSFULLY TERMINATED

Executive Routine Listings

UEXT001
mpxx
literal :
/*--
/* UEXT001 - Control module for sample COBOL Extract
/* Check input exists:
/*--

if ARRAYHI(:ext_record:) <= 0 then do
say :NO INPUT TO BE PROCESSED:
exit 8

end
/*--
/* Set up globals:
/* Environment variables:
/*---------------------------------------

drop ext_obj_occ
drop ext_object_id

/*---------------------------------------
/* Generic variables for all objects:
/*---------------------------------------

drop ext_obj_name
drop ext_obj_id
drop ext_obj_type
drop ext_obj_parent_pointer
drop ext_obj_chain
drop ext_obj_chain_end
drop dmr_mem_gen

/*---------------------------------------
/* PROGRAM object:
/*---------------------------------------

drop ext_entry_occ /* no of ENTRY attributes
108

Appendix A - Importing a COBOL Program
drop ext_calls_occ /* no of CALLS attributes
drop ext_entry_ptr /* ptr to 1st ENTRY attribute
drop ext_calls_ptr /* ptr to 1st CALLS attribute

/*---------------------------------------
/* MODULE object:
/*---------------------------------------

drop ext_using_occ /* no of USING attributes
drop ext_using_ptr /* ptr to 1st USING attribute

/*---------------------------------------
/* PARAMETERS-ENTRY relationship:
/*---------------------------------------

drop ext_entry_string /* ENTRY "string"
drop ext_parm_occ /* no of PARAMETER members for this

/* ENTRY point
drop ext_parm_ptr /* ptr to 1st PARAMETER member

/*---------------------------------------
/* CALLS-USING relationship:
/*---------------------------------------

drop ext_cusg_occ /* no of MODULE members for this
drop ext_cusg_ptr /* ptr to 1st module member

/*---------------------------------------
/* Now declare them as globals:
/*---------------------------------------

global ext_obj_occ
global ext_object_id
global ext_obj_name
global ext_obj_id
global ext_obj_type
global ext_obj_parent_pointer
global ext_obj_chain
global ext_obj_chain_end
global dmr_mem_gen
global ext_entry_occ
global ext_entry_ptr
global ext_calls_occ
global ext_calls_ptr
global ext_entry_string
global ext_parm_occ
global ext_parm_ptr
global ext_using_occ
global ext_using_ptr
global ext_cusg_occ
global ext_cusg_ptr

/*--
/* Start processing:
/*--

command x /* pointer to object being processed
command y /* pointer to relationship being processed
ext_obj_occ = 0
x = 0
y = 0
109

ASG-DictionaryManager User’s Guide
SETRES ; /* set up reserved word list
/*--
/* Find the program id:
/*--

UEXT004 ;
if &ccod > 4 then exit 8

/*--
/* Find the PROCEDURE DIVISION:
/*--

UEXT005 ;
if &ccod > 4 then exit 8

/*--
/* Find the ENTRY statements:
/*--

UEXT006 ;
if &ccod > 4 then exit 8

/*--
/* Find the CALL statements:
/*--

UEXT007 ;
if &ccod > 4 then exit 8

exit 0

UEXT002

mpxx
literal :
/*--
/* UEXT002 :
/* input - none
/* output - command variable array USING containing all using words
/*--

drop using
command using
local l u
u = 0

-uloop
UEXT003 ;
if found_word ne :: then do

u = u+1
using(u) = STRIP(found_word,:T:,:.:) /* strip trailing period
if POS(:.:,found_word) > 0 then goto end_using
if SEARCH(:RESERVE:,found_word,,,:M:) > 0 then goto end_using
goto uloop

end
-end_using
exit
110

Appendix A - Importing a COBOL Program
UEXT003

mpxx
literal :
/*--
/* UEXT003 :
/* input - via command variables:
/* curr_line = current line number
/* curr_word = current word
/* eof_flag = end of file flag: 0 = not eof
/* 1 = eof
/* output - command variable found_word = next word
/*--

command curr_line curr_word
command found_word
if eof_flag = 1 then exit 4

-next_word
line = SUBSTR(ext_record(curr_line),1,72) /* only cols 1 - 72
found_word = WORD(LINE,curr_word+1)
if found_word = :: then do

curr_line = curr_line+1
curr_word = 0
if curr_line > ARRAYHI(:ext_record:) then goto end_of_file
goto next_word

end
curr_word = curr_word+1
exit 0 /* found_word ne ::

-end_of_file
eof_flag = 1
exit 4 /* end of file reached
111

ASG-DictionaryManager User’s Guide
UEXT004

mpxx
literal :
/*--
/* UEXT004 :
/* Find the program id:
/* Look for string with PROGRAM-ID in col 8 on non-comment line:
/*--

command x /* pointer to object being processed
command p /* pointer to current parent object
command y /* pointer to relationship being processed
local j /* pointer to line being processed
local str /* string constant
j = 0
str = :PROGRAM-ID:

-prog_id_search
j = SEARCH(:ext_record:,str,j+1,,:p:)
if j > 0 then do

len = LENGTH(: :°°str)
if SUBSTR(ext_record(j),7,len) = : :°°str then goto

prog_id_found
goto prog_id_search

end
say str :NOT FOUND:
exit 8

/*--
/* set up *one* PROGRAM object at (x):
/*--

-prog_id_found
x = x+1
prog_name = WORD(ext_record(j),2)
ext_obj_occ = ext_obj_occ+1

ext_obj_name(x) = STRIP(prog_name,:T:,:.:) /* strip trailing
dot

ext_object_id = ext_obj_name(x)
ext_obj_id(x) = ext_obj_name(x)
ext_obj_type(x) = :PROGRAM:
dmr_mem_gen(x) = :GEN:
ext_obj_chain_end(x) = x /* start (x) chain
ext_entry_occ(x) = 0 /* no of ENTRY attributes
ext_calls_occ(x) = 0 /* no of CALLS attributes
p = x /* set current parent
exit 0
112

Appendix A - Importing a COBOL Program
UEXT005

mpxx
literal :
/*--
/* UEXT005:
/* Find PROCEDURE DIVISION:
/* Look for string with PROCEDURE DIVISION on non-comment line:
/*--

command y p
local x j str
j = 0
str = :PROCEDURE DIVISION:

-proc_div_search
j = SEARCH(:ext_record:,str,j+1,,:p:)
if j > 0 then do

len = LENGTH(: :°°str)
if SUBSTR(ext_record(j),7,len) = : :°°str then goto

proc_div_found
goto proc_div_search

end
say str :NOT FOUND:
exit 8

-proc_div_found
if WORD(ext_record(j),3) = :USING: then do

/*--
/* set up command variables for control of UEXT002,UEXT003:
/*--

command curr_line curr_word
curr_line = j
curr_word = 4
UEXT002 ;

/*--
/* set up *one* PARAMETERS-ENTRY relationship at (y)
/*--

itot = ARRAYHI(:using:)
i = 1
y = y+1 /* next empty slot
if ext_entry_ptr(p) = :: then -

ext_entry_ptr(p) = y /* initialize parent ptr
ext_entry_occ(p) = ext_entry_occ(p)+1
ext_entry_string(y) = : : /* (y) attribute
ext_parm_occ(y) = 0
x = ARRAYHI(:ext_obj_name:)+1 /* next object no
ext_parm_ptr(y) = x /* initialize ptr
-uloop
if i <= itot then do

ext_parm_occ(y) = ext_parm_occ(y)+1
ext_obj_name(x) = using(i)
ext_obj_type(x) = :GROUP:
dmr_mem_gen(x) = :REF:
113

ASG-DictionaryManager User’s Guide
ext_obj_parent_pointer(x) = p /* chain(x) to parent(p)
ext_obj_chain(ext_obj_chain_end(p)) = x
ext_obj_chain_end(p) = x
x = x+1
i = i+1
goto uloop

end
end
exit 0
114

Appendix A - Importing a COBOL Program
UEXT006

mpxx
literal :
/*--
/* UEXT006: Find ENTRY statements:
/* Look for string with ENTRY in area B on non-comment line:
/*--

command y p
local x j str
j = 0
str = :ENTRY :

-entry_search
j = SEARCH(:ext_record:,str,j+1,,:p:)
if j > 0 then do
if SUBSTR(ext_record(j),1,11) = : : then goto entry_found
goto entry_search

end
/*--
/* This is the principal exit from UEXT006:
/*--

exit 0
-entry_found
entry_string = WORD(ext_record(j),2)

/*--
/* set up *one* PARAMETERS-ENTRY relationship at (y)
/*--

y = y+1 /* next empty slot
if ext_entry_ptr(p) = :: then -

ext_entry_ptr(p) = y /* initialize parent ptr
ext_entry_occ(p) = ext_entry_occ(p)+1
ext_entry_string(y) = entry_string
ext_parm_occ(y) = 0

if WORD(ext_record(j),3) = :USING: then do
x = ARRAYHI(:ext_obj_name:)+1 /* next object no
ext_parm_ptr(y) = x /* initialize ptr

/*--
/* set up command variables for control of UEXT002,UEXT003:
/*--

command curr_line curr_word
curr_line = j
curr_word = 3
UEXT002 ;

/*--
/* set up USING objects:
/*--

itot = ARRAYHI(:using:)
i = 1
ext_parm_ptr(y) = x /* initialise ptr

-uloop
115

ASG-DictionaryManager User’s Guide
if i <= itot then do
ext_parm_occ(y) = ext_parm_occ(y)+1
ext_obj_name(x) = using(i)
ext_obj_type(x) = :GROUP:
dmr_mem_gen(x) = :REF:

ext_obj_parent_pointer(x) = p /* chain(x) to parent(p)
ext_obj_chain(ext_obj_chain_end(p)) = x
ext_obj_chain_end(p) = x
x = x+1
i = i+1
goto uloop

end
end
goto entry_search /* keep searching for ENTRY
116

Appendix A - Importing a COBOL Program
UEXT007

mpxx
literal :
/*--
/* UEXT007:
/* Find CALL statements:
/* Look for string with CALL in area B on non-comment line:
/*--

command y p
local x j str
j = 0
str = :CALL :

-calls_search
j = SEARCH(:ext_record:,str,j+1,,:p:)
if j > 0 then do

if WORD(ext_record(j),1) ne :CALL: then goto calls_search
if SUBSTR(ext_record(j),1,11) = : : then goto calls_found
goto calls_search

end
/*--
/* This is the principal exit from UEXT007:
/*--

exit 0
-calls_found
calls_name = WORD(ext_record(j),2)
q = POS(:":,calls_name)
if q > 0 then do

len = LENGTH(calls_name)-2
calls_name = SUBSTR(calls_name,2,len)

end
/*--
/* set up *one* CALLs relationship at (y):
/*--

y = y+1 /* next empty slot
if ext_calls_ptr(p) = :: then -

ext_calls_ptr(p) = y /* initialize parent ptr
ext_calls_occ(p) = ext_calls_occ(p)+1
x = ARRAYHI(:ext_obj_name:)+1
ext_cusg_occ(y) = 1
ext_cusg_ptr(y) = x
ext_obj_name(x) = calls_name
ext_obj_type(x) = :MODULE:
dmr_mem_gen(x) = :REF:

ext_obj_parent_pointer(x) = p /* chain(x) to parent(p)
ext_obj_chain(ext_obj_chain_end(p)) = x
ext_obj_chain_end(p) = x
ext_using_occ(x) = 0

if WORD(ext_record(j),3) = :USING: then do
c = x+1 /* next object no
ext_using_ptr(x) = c /* initialise ptr
117

ASG-DictionaryManager User’s Guide
/*--
/* set up command variables for control of UEXT002,UEXT003:
/*--

command curr_line curr_word
curr_line = j
curr_word = 3
UEXT002 ;

/*--
/* set up USING objects at (c):
/*--

itot = ARRAYHI(:using:)
i = 1

-uloop
if i <= itot then do

ext_using_occ(x) = ext_using_occ(x)+1
ext_obj_name(c) = using(i)
ext_obj_type(c) = :GROUP:
dmr_mem_gen(c) = :REF:

ext_obj_parent_pointer(c) = p /* chain(c) to parent(p)
ext_obj_chain(ext_obj_chain_end(p)) = c
ext_obj_chain_end(p) = c
c = c+1
i = i+1
goto uloop

end
end
goto calls_search /* keep searching for CALLS
118

Appendix A - Importing a COBOL Program
UREC001

mpxx
/* -- *
/* UREC001 : Supplied reconcile exec *
/* *
/* input parameter : &p0 = current object number. *
/* *
/* This exec will process external object types as follows: *
/* *
/* ext_obj_type dmr_mem_name dmr_mem_type (dmr_mem_gen) *
/* --- *
/* PROGRAM PG-obj_name PROGRAM (GEN) *
/* MODULE MO-obj_name MODULE (REF) *
/* GROUP GR-obj_name GROUP (REF) *
/* *
/* -- *

local x
literal :
set x &p0
if TYPE(dmr_mem_gen(x)) = :U: then exit

/* ---PROGRAM---------
if ext_obj_type(x) eq :PROGRAM: then do

set dmr_mem_type(x) :PROGRAM:
set dmr_mem_name(x) :PG-:ext_obj_name(x)
exit

end
/* --MODULE----------

if ext_obj_type(x) eq :MODULE: then do
set dmr_mem_type(x) :MODULE:
set dmr_mem_name(x) :MO-:ext_obj_name(x)
exit

end
/*--GROUP-----------

if ext_obj_type(x) eq :GROUP: then do
set dmr_mem_type(x) :GROUP:
set dmr_mem_name(x) :GR-:ext_obj_name(x)
exit

end
/*--ERROR-----------
/* No member-naming or typing rule found:
/* issue warning message 5743 and take default action:
/*--

MESSAGE 5743 W ’’ ext_obj_type(x) ext_obj_name(x)
set dmr_mem_name(x) ext_obj_name(x)
set dmr_mem_type(x) ext_obj_type(x)
exit
119

ASG-DictionaryManager User’s Guide
UPRE001

mpxx
literal :

/*--
/* UPRE001 - User-supplied layout control exec and layout
/*
/* input parameter : x = array number of member whose
/* definition is to be generated
/* output parameter : &ccod = 0 - member accepted and generated
/* 4 - member rejected
/* 8 - x not valid
/*--

command x
if TYPE(x) ne :N: then exit 8
if dmr_mem_type(x) eq :PROGRAM: then do /* do if module

goto layout
-control_exit
exit 0

end
exit 4 /* reject otherwise

/*--
/* Layout exec:
/*--
-layout

local i j itot jtot
WRITEF dmr_mem_func(x) dmr_mem_name(x) ;
WRITEF dmr_mem_type(x)
UPRE002 ; /* common clauses

/*---
/* output ENTRY clauses:
/*---

jtot = ext_entry_occ(x)
if jtot > 0 then do

y = ext_entry_ptr(x)
j = 1

-entryloop
if j <= jtot then do

entry_string = ext_entry_string(y)
q = POS(:":,entry_string)
if q = 0 then entry_string = :":°°entry_string°°:":
WRITEF :ENTRY: entry_string
itot = ext_parm_occ(y)
if itot > 0 then do

c = ext_parm_ptr(y)
i = 1
f = :PARAMETERS :

-parmloop
if i <= itot then do
WRITEF f°°dmr_mem_name(c)
f = : ,:
120

Appendix A - Importing a COBOL Program
i = i+1
c = c+1
goto parmloop

end
j = j+1
y = y+1
goto entryloop

end
end

end
/*--
/* output CALLS clauses:
/*--

jtot = ext_calls_occ(x)
if jtot > 0 then do

y = ext_calls_ptr(x)
j = 1

-callsloop
if j <= jtot then do

z = ext_cusg_ptr(y)
WRITEF :CALLS: dmr_mem_name(z)
itot = ext_using_occ(z)
if itot > 0 then do

c = ext_using_ptr(z)
i = 1
f = :PASSING :

-passingloop
if i <= itot then do
WRITEF f°°dmr_mem_name(c)
f = : ,:
i = i+1
c = c+1
goto passingloop

end
j = j+1
y = y+1
goto callsloop

end
end

end
/*--
/* Terminator:
/*--

WRITEF :;:
goto control_exit
121

ASG-DictionaryManager User’s Guide
The Example External File
This is a listing of the COBOL program to be imported.

IDENTIFICATION DIVISION. SDD00010
------------------------- SDD00020

SKIP2 SDD00030
PROGRAM-ID. SDD11. SDD00040

SKIP1 SDD00050
AUTHOR. JOHN DENT. SDD00060

SKIP1 SDD00070
DATE-WRITTEN. SEPT 1982. SDD00080

SKIP1 SDD00090
DATE-COMPILED. 00/00/00. SDD00100

SKIP1 SDD00110
INSTALLATION. MSP. SDD00120

SKIP1 SDD00130
REMARKS. DESCRIPTION SDD00140

"DATAMANAGER INTERFACE - GET PCBS". SDD00150
THIS MODULE FORMATS AND PASSES TO DATAMANAGER SDD00160
THE COMMANDS NEEDED TO BUILD A LIST OF PCBS. SDD00170
IF NO PCBS ARE FOUND, DI-RETURN ID SET TO SDD00180

THE VALUE WITH CONDITION-NAME DICT-CALL-FAILED.SDD00190
ENVIRONMENT DIVISION. SDD00200
---------------------- SDD00210

SKIP2 SDD00220
CONFIGURATION SECTION. SDD00230
----------------------- SDD00240

SKIP1 SDD00250
SOURCE-COMPUTER. IBM-370. SDD00260

SKIP1 SDD00270
OBJECT-COMPUTER. IBM-370. SDD00280

EJECT SDD00290
DATA DIVISION. SDD00300
--------------- SDD00310

SKIP1 SDD00320
WORKING-STORAGE SECTION. SDD00330
------------------------ SDD00340

SKIP1 SDD00350
/INCLUDE XMRMDET C170 SDD00360

05 MD-VARIABLE PIC X(5). SDD00370
01 PCB-LIST-WORK. SDD00380

05 PCB-COUNT-WORK PIC S9(4) COMP. SDD00390
05 PCB-ENTRY-WORK OCCURS 100 TIMES. SDD00400
10 PCB-NAME-WORK PIC X(32). SDD00410
10 PCB-TYPE-WORK PIC X(5). SDD00420

01 PCB-SUB PIC S9(4) COMP. SDD00430
01 PCB-SUB-WORK PIC S9(4) COMP. SDD00440
01 PCB-ENQUIRY-NAME PIC X(32). SDD00450

EJECT SDD00460
LINKAGE SECTION. SDD00470
122

Appendix A - Importing a COBOL Program
----------------- SDD00480
SKIP1 SDD00490

/INCLUDE XMRDATA C170 SDD00500
EJECT SDD00510

/INCLUDE XMRDMRI C170 SDD00520
EJECT SDD00530

/INCLUDE XMRDOUT C170 SDD00540
EJECT SDD00550

/INCLUDE COBDINP C170 SDD00560
EJECT SDD00570

PROCEDURE DIVISION USING SDD00580
XMR-DATA SDD00590
DMR-INTERFACE SDD00600
DOUTPUT SDD00610

DICTIONARY-INPUT-LINES. SDD00620
-- SDD00630

SKIP2 SDD00640
SDD11-GET-PCBS. SDD00650

*SDD00660
* INITIALIZATION. *SDD00670

*SDD00680

MOVE SPACES TO PCB-LIST. SDD00690
MOVE 0 TO PCB-COUNT. SDD00700
MOVE SPACES TO PCB-LIST-WORK. SDD00710
MOVE 0 TO PCB-COUNT-WORK. SDD00720
MOVE SPACES TO DICT-LINE (1). SDD00730
SKIP1 SDD00740

*SDD00750
* SET DMR-INPUT-AREA-LENGTH SO THAT ONE LINE WILL BE READ.
*SDD00760
* PERFORM SUBROUTINE TO GET PCB’S. *SDD00770

*SDD00780

ENTRY "ABCDEFGH" USING DMR-INTERFACE SDD00790
DOUTPUT. SDD00800

MOVE DMR-INPUT-LINE-LENGTH TO DMR-INPUT-AREA-LENGTH.
SDD00810

PERFORM GET-PCBS THRU GET-PCBS-EXIT. SDD00820
SKIP1 SDD00830

SDD11-GOBACK. SDD00840
GOBACK. SDD00850
EJECT SDD00860

GET-PCBS. SDD00870
123

ASG-DictionaryManager User’s Guide

*SDD00880
* SET UP COMMAND TO FIND ALL PCB MEMBERS THAT ARE USED
*SDD00890
* DIRECTLY BY THE PROGRAM AND PERFORM SUBROUTINE TO PLACE
*SDD00900
* THEM IN THE PCB LIST. IF NO PCBS, SET DICT-CALL-FAILED.
*SDD00910

*SDD00920

MOVE "WHICH" TO DLP1-WHICH (1). SDD00930
MOVE CP-PCB-NAME TO DLP1-PCB-MT (1). SDD00940
MOVE "DIRECTLY" TO DLP1-DIR (1). SDD00950
MOVE "CONSTITUTE" TO DLP1-CONST (1). SDD00960
MOVE RTP-PROGRAM-NAME TO DLP1-NAME (1). SDD00970
MOVE ";" TO DLP1-TERM (1). SDD00980
PERFORM BUILD-PCB-LIST THRU BUILD-PCB-LIST-EXIT.

SDD00990
IF PCB-COUNT - 0 SDD01000

MOVE "F" TO DI-RETURN. SDD01010
SKIP1 SDD01020

GET-PCBS-EXIT. SDD01030
EXIT. SDD01040
EJECT SDD01050

BUILD-PCB-LIST. SDD01060
ENTRY "PQRSTUVW" USING PCBNAME. SDD01070

*SDD01080
* CALL DICTIONARY TO PASS COMMAND. *SDD01090

*SDD01100

MOVE "1" TO DMR-FUNCTION. SDD01110
PERFORM CALL-DICTIONARY THRU CALL-DICTIONARY-EXIT.

SDD01120

*SDD01130
* CALL DICTIONARY TO RETURN INFORMATION. *SDD01140

*SDD01150

MOVE "2" TO DMR-FUNCTION. SDD01160
READ-PCB-LIST. SDD01170

PERFORM CALL-DICTIONARY THRU CALL-DICTIONARY-EXIT.
SDD01180

IF NOTHING-RETURNED SDD01190
OR DMR-ENDED SDD01200

GO TO COMBINE-LISTS. SDD01210
124

Appendix A - Importing a COBOL Program
IF MESSAGE-RETURNED SDD01220
GO TO READ-PCB-LIST. SDD01230

*SDD01240
* ADD OUTPUT MESSAGE PCBS DIRECTLY TO PCB-LIST. OUTPUT
*SDD01250
* MESSAGE IF PCB-LIST OVERFLOWS, OR AN INACCESSIBLE MEMBER IS
*SDD01260
* ENCOUNTERED. *SDD01270

*SDD01280

IF NOT OUTPUT-MESSAGE-PCB SDD01290
GO TO BUILD-WORK-LIST. SDD01300

ADD 1 TO PCB-COUNT. SDD01310
IF PCB-COUNT > 100 SDD01320

MOVE 30031 TO MD-NUMBER SDD01330
MOVE "E" TO MD-SEVERITY SDD01340
MOVE " " TO MD-INDICATOR SDD01350
MOVE 0 TO MD-LENGTH SDD01360

CALL "SMU12" USING XMR-DATA MESSAGE-DETAILS SDD01370
PERFORM ERROR-BOUNCE THRU ERROR-BOUNCE-EXIT SDD01380
MOVE "F" TO DI-RETURN SDD01390
GO TO BUILD-PCB-LIST-EXIT. SDD01400

IF DPQBDMEM - SPACES SDD01410
IF DPQBTMEM - "INACCESSIBLE MEMBER" SDD01420

MOVE 30048 TO MD-NUMBER SDD01430
MOVE DPQBTOT TO MD-VARIABLE SDD01440
MOVE 5 TO MD-LENGTH SDD01450
MOVE "E" TO MD-SEVERITY SDD01460
MOVE " " TO MD-INDICATOR SDD01470

CALL "SMU12" USING XMR-DATA MESSAGE-DETAILS SDD01480
PERFORM ERROR-BOUNCE THRU ERROR-BOUNCE-EXIT SDD01490
SUBTRACT 1 FROM PCB-COUNT SDD01500
GO TO READ-PCB-LIST. SDD01510

MOVE DPQBDMEM TO PCB-NAME (PCB-COUNT). SDD01520
MOVE DPQBDMTP TO PCB-TYPE (PCB-COUNT). SDD01530
GO TO READ-PCB-LIST. SDD01540

BUILD-WORK-LIST. SDD01550

*SDD01560
* ADD PCBS OTHER THAN OUTPUT MESSAGE PCBS TO WORK LIST FOR
*SDD01570
* LATER ADDITION TO PCB-LIST. OUTPUT MESSAGE IF WORK LIST
*SDD01580
* OVERFLOWS OR AN INACCESSIBLE MEMBER IS ENCOUNTERED.
*SDD01590
* FOR STRUCTURE PCB’S, REPLACE TYPE FIELD WITH THE KEYLENGTH
*SDD01600
125

ASG-DictionaryManager User’s Guide
* OF THE PCB IF PRESENT, OTHERWISE BY SPACES. *SDD01610

*SDD01620

IF NOT STRUCTURE-PCB SDD01630
AND NOT GSAM-PCB SDD01640

GO TO READ-PCB-LIST. SDD01650
ADD 1 TO PCB-COUNT-WORK. SDD01660
IF PCB-COUNT-WORK > 100 SDD01670

MOVE 30031 TO MD-NUMBER SDD01680
MOVE "E" TO MD-SEVERITY SDD01690
MOVE " " TO MD-INDICATOR SDD01700
MOVE 0 TO MD-LENGTH SDD01710

CALL "SMU12" USING XMR-DATA MESSAGE-DETAILS SDD01720
PERFORM ERROR-BOUNCE THRU ERROR-BOUNCE-EXIT SDD01730
MOVE "F" TO DI-RETURN SDD01740
GO TO BUILD-PCB-LIST-EXIT. SDD01750

IF DPQBDMEM - SPACES SDD01760
IF DPQBTMEM - "INACCESSIBLE MEMBER" SDD01770

MOVE 30048 TO MD-NUMBER SDD01780
MOVE DPQBTOT TO MD-VARIABLE SDD01790
MOVE 5 TO MD-LENGTH SDD01800
MOVE "E" TO MD-SEVERITY SDD01810
MOVE " " TO MD-INDICATOR SDD01820

CALL "SMU12" USING XMR-DATA MESSAGE-DETAILS SDD01830
PERFORM ERROR-BOUNCE THRU ERROR-BOUNCE-EXIT SDD01840
SUBTRACT 1 FROM PCB-COUNT-WORK SDD01850
GO TO READ-PCB-LIST. SDD01860

MOVE DPQBDMEM TO PCB-NAME-WORK (PCB-COUNT-WORK).
SDD01870

MOVE DPQBDMTP TO PCB-TYPE-WORK (PCB-COUNT-WORK).
SDD01880

GO TO READ-PCB-LIST. SDD01890
COMBINE-LISTS. SDD01900

*SDD01910
* MOVE STRUCTURE AND GSAM PCBS TO PCB LIST FOLLOWING OUTPUT
*SDD01920
* MESSAGE PCBS. THUS ALL PCBS ARE RETAINED IN THEIR ORIGINAL
*SDD01930
* ORDER ACCORDING TO TYPE, BUT OUTPUT MESSAGE PCBS COME

FIRST.*SDD01940
* OUTPUT MESSAGE IF PCB-LIST OVERFLOWS. *SDD01950

*SDD01960

IF PCB-COUNT-WORK - 0 SDD01970
GO TO BUILD-PCB-LIST-EXIT. SDD01980

IF ((PCB-COUNT + PCB-COUNT-WORK) > 100) SDD01990
MOVE 30031 TO MD-NUMBER SDD02000
126

Appendix A - Importing a COBOL Program
MOVE "E" TO MD-SEVERITY SDD02010
MOVE " " TO MD-INDICATOR SDD02020
MOVE 0 TO MD-LENGTH SDD02030

CALL "SMU12" USING XMR-DATA MESSAGE-DETAILS SDD02040
PERFORM ERROR-BOUNCE THRU ERROR-BOUNCE-EXIT SDD02050
MOVE "F" TO DI-RETURN SDD02060
GO TO BUILD-PCB-LIST-EXIT. SDD02070

MOVE 0 TO PCB-SUB-WORK. SDD02080
COMBINE-LOOP. SDD02090

ADD 1 TO PCB-SUB-WORK. SDD02100
IF PCB-SUB-WORK > PCB-COUNT-WORK SDD02110

GO TO BUILD-PCB-LIST-EXIT. SDD02120
ADD 1 TO PCB-COUNT. SDD02130
MOVE PCB-NAME-WORK (PCB-SUB-WORK) TO PCB-NAME (PCB-COUNT).

SDD02140
MOVE PCB-TYPE-WORK (PCB-SUB-WORK) TO PCB-TYPE (PCB-COUNT).

SDD02150

*SDD02160
* FOR STRUCTURE PCBS, REPLACE TYPE WITH THE KEYLENGTH IF ANY,
*SDD02170
* OTHERWISE WITH SPACES. *SDD02180

*SDD02190

IF PCB-TYPE (PCB-COUNT) - "STRUC" SDD02200
PERFORM GET-KEYLENGTH THRU GET-KEYLENGTH-EXIT. SDD02210

GO TO COMBINE-LOOP. SDD02220
SKIP1 SDD02230

BUILD-PCB-LIST-EXIT. SDD02240
EXIT. SDD02250
EJECT SDD02260

GET-KEYLENGTH. SDD02270

*SDD02280
* OBJECT - MOVE KEYLENGTH IF PRESENT TO TYPE-FIELD, OTHERWISE
*SDD02290
* SET TYPE FIELD TO SPACES. *SDD02300

*SDD02310

MOVE SPACES TO PCB-TYPE (PCB-COUNT). SDD02320

*SDD02330
* PASS A "REPORT PCB-NAME" COMMAND TO DMR. *SDD02340

*SDD02350
127

ASG-DictionaryManager User’s Guide
MOVE PCB-NAME (PCB-COUNT) TO PCB-ENQUIRY-NAME. SDD02360
REPORT-PCB. SDD02370

MOVE SPACES TO DICT-LINE (1). SDD02380
MOVE "REPORT" TO DLR-REPORT (1). SDD02390
MOVE PCB-ENQUIRY-NAME TO DLR-NAME (1). SDD02400
MOVE ";" TO DLR-TERM (1). SDD02410
MOVE "1" TO DMR-FUNCTION. SDD02420
PERFORM CALL-DICTIONARY THRU CALL-DICTIONARY-EXIT.

SDD02430

*SDD02440
* RETURN INFORMATION. *SDD02450

*SDD02460

MOVE "2" TO DMR-FUNCTION. SDD02470
PERFORM CALL-DICTIONARY THRU CALL-DICTIONARY-EXIT.

SDD02480

*SDD02490
* IF A "DEFINITION AS IN" CLAUSE IS ENCOUNTERED, THE
*SDD02500
* DEFINITION OF THE PCB IS IN ANOTHER PCB. GET NAME OF OTHER
*SDD02510
* PCB AND LOOP BACK TO REPEAT REPORT AND SEARCH FOR KEYLENGTH.
*SDD02520

*SDD02530
KEYLENGTH-LOOP. SDD02540

PERFORM CALL-DICTIONARY THRU CALL-DICTIONARY-EXIT.
SDD02550

IF DPDLADEF - "DEFINITION AS IN" SDD02560
MOVE DPDLANAM TO PCB-ENQUIRY-NAME SDD02570
GO TO REPORT-PCB. SDD02580

IF NOTHING-RETURNED SDD02590
OR DMR-ENDED SDD02600

GO TO GET-KEYLENGTH-EXIT. SDD02610

*SDD02620
* MOVE KEYLENGTH VALUE IF FOUND TO PCB-TYPE. *SDD02630

*SDD02640

IF DPDLSKLK - "KEYLENGTH" SDD02650
MOVE DPDLSKLN2 TO PCB-TYPE (PCB-COUNT) SDD02660

ELSE SDD02670
GO TO KEYLENGTH-LOOP. SDD02680
128

Appendix A - Importing a COBOL Program
SKIP1 SDD02690
GET-KEYLENGTH-EXIT. SDD02700

EXIT. SDD02710
EJECT SDD02720

CALL-DICTIONARY. SDD02730

*SDD02740
* CALL DMRUS TO COMMUNICATE WITH DMR. *SDD02750

*SDD02760

CALL "MPSCI" USING DMR-INTERFACE SDD02770
DOUTPUT SDD02780

DICTIONARY-INPUT-LINES. SDD02790
SKIP1 SDD02800
PERFORM EROR-REPORTED THRU EROR-REPORTED-EXIT. SDD02810

CALL-DICTIONARY-EXIT. SDD02820
EXIT. SDD02830
EJECT SDD02840

EROR-REPORTED. SDD02850
* SDD02860

*SDD02870
* IF DMR HAS REPORTED A SERIOUS ERROR, SET ERROR CODE TO
*SDD02880
* TRIGGER OFF ERROR-BOUNCING *SDD02890

*SDD02900

IF FATAL-ERROR SDD02910
MOVE "EROR" TO PS-RETURN-2 SDD02920
GO TO SDD11-GOBACK. SDD02930

EROR-REPORTED-EXIT. SDD02940
EXIT. SDD02950
EJECT SDD02960

ERROR-BOUNCE. SDD02970
* SDD02980

*SDD02990
* IF MPSCI HAS REPORTED LINE LIMIT EXCEEDED OR NO CORE
*SDD03000
* OR A SERIOUS DMR ERROR *SDD03010
* DURING THIS COMMAND RETURN TO CALLING MODULE *SDD03020
* (PS-RETURN-2 - ’LINE’/’CORE’/’EROR’ - PS-RETURN-2-ERR)
*SDD03030

*SDD03040
129

ASG-DictionaryManager User’s Guide
IF PS-RETURN-2-ERR SDD03050
GO TO SDD11-GOBACK. SDD03060

ERROR-BOUNCE-EXIT. SDD03070
EXIT. SDD03080
EJECT SDD03090
130

Appendix B

Importing an Entity-relational Model
Introduction

This is an example designed to illustrate how to import an entity-relational model from version
3.10 of the BACHMAN/Analyst tool into a Manager Products repository.

The example follows the four standard stages in the import procedure: extract, reconcile, preview,
and populate. Information in an export file generated by BACHMAN/Analyst is used as the basis
for the import procedure.

This example applies to users who have the panel interface. To keep the example reasonably
simple, not all modeling aspects are reproduced into the Manager Products repository.

All executive routines associated with this example are available in your Manager Products
demonstration dictionary. The import file itself is supplied as a separate dataset. Refer to your
installation manual for details of this dataset.

The example illustrates several aspects of generic import:

• Extracting data both from an external file and from a variable

• Writing extract, reconcile, and preview Executive Routines

• Some features of the Manager Products Procedures Language and some useful techniques
you can exploit

Refer to "Listings of Executive Routines" on page 144 for listings of the example import executive
routines.

Refer to "The Imported Model" on page 157 for a diagram of the imported model.

The Import File

The import file used in this example was generated using the export facility of the Bachman
Analyst Workbench. The file is formatted according to rules specific to the Bachman Analyst
Workbench. It contains a great deal of information, but only a small portion of it is of interest to
this example. While its format is complex and very detailed, its general characteristics are not, and
these are described below.
131

ASG-DictionaryManager User’s Guide
The file represents a complete model and is made up of sections, each of which describes a
particular aspect of the model. For example, there is a section describing the entities in the model.
These sections are described below.

Each section has an identifier string (enclosed in double asterisks) at the start, followed by one or
more lines of data. Each line has fields separated by commas. Each field contains a value that
represents either a number, a text-string, or a time stamp. The numeric values you will be
extracting are all integers. The text strings are delimited by double quotes. Time stamps have a
more complex format that will not described, as they will not be extracted in this example.

Figure 9 on page 132 shows how entities, partnerships, and partnership sets are related. Entities
are shown as boxes with rounded corners, partnerships (relationships) are shown as diamonds, and
partnership sets (links) are shown as lines linking a diamond with a box.

Figure 9. Illustration of Relationships

In order to derive relationships, information about the entities, the partnerships, and the
partnership sets must be combined. Each line of the file has other common fields including:

• The key, a number that identifies the object uniquely in the file (and therefore the model)

• The name of the creator of the object and a corresponding time stamp (not imported)

• The name of the person who last modified the object and a corresponding time stamp (not
imported)

The names and explanation for each of the extracted fields below is taken from the Bachman
documentation.

Source Entity Destination
Entity

Partnership

Partnership
 set 2

Partnership
 set 1
132

Appendix B - Importing an Entity-relational Model
The Enterprise Model
Identifying string: **ENTERPRISE_MODEL**

The Entities
Identifying string: **ENTITY**

The Partnerships
Identifying string: **PARTNERSHIP**

Fields Extracted

enterprise_modelke Unique number that identifies the object

name Name of object

Fields Extracted

entitykey Unique number that identifies the object

name Name of object

minvol Lowest possible number of occurrences for this entity

maxvol Highest possible number of occurrences for this entity

expvol Expected number of occurrences for this entity

grwpct Expected growth percentage for this entity

gptu Character representing the growth rate period for this entity

normlvl Character representing the normalisation level

normok Character indicating that the entity is sufficiently nomalized

Fields Extracted

partnershipkey Unique number that identifies this object

partnership_set Partnership_setkey value that identifies the source partnership set of the
partnership

partnership_set2 Partnership_setkey value that identifies the destination partnership set of
the partnership

min1vol Minimum volume of the source partnership set for this partnership

max1vol Maximum volume of the source partnership set for this partnership

min2vol Minimum volume of the destination partnership set for this partnership

max2vol Maximum volume of the destination partnership set for this partnership
133

ASG-DictionaryManager User’s Guide
The Partnerships Sets
Identifying string: **PARTNERSHIP_SET**

Mapping the Two Models
The model we imported from the Bachman Analyst Workbench is derived according to the rules
or schema for that tool. The Manager Products repository has a different schema. It is therefore
important to establish how the Bachman model maps onto the Manager Products Repository
Information Model (RIM).

The RIM is determined by the meta-schema used for it. In this case, there are these
correspondences:

Notice that the GROUP member type models the whole enterprise model. This member is just a
convenient way to group together all of the ENTITY and BUSINESS-RELATIONSHIP members
using a SEE clause to facilitate future repository interrogation.

The Extract Stage

Introduction
The import file described in the previous section must be imported into the Manager Products
environment.

You can often extract data by issuing an EXTRACT command directly and specifying your own
extract Executive Routine in the USING keyword. This is done in the example in Appendix A,
"Importing a COBOL Program," on page 103, where data from a COBOL source program is
imported.

Fields Extracted

partnership_setkey Unique number that identifies this object

name Name of object

minvol Minimum volume for this partnership set

maxvol Maximum volume for this partnership set

expvol Expected volume for this partnership set

Bachman Analyst Workbench Manager Products Repository

Enterprise Model GROUP

Entity ENTITY

Partnership + Partnership Set BUSINESS-RELATIONSHIP
134

Appendix B - Importing an Entity-relational Model
In this example, however, several, more complex EXTRACT commands are needed. The
EXTRACT commands are therefore grouped together in a user executive routine (with other
additional processing) which is executed instead.

Processing Overview
The extract stage is initiated by calling the top-level executive routine, by entering this command:

BACHMAN;

This routine calls other user executive routines as shown in Figure 10 on page 135:

Figure 10. Extracting from the Bachman Analysis Workbench

The EXTRACT command is performed four times, once for each object type imported. Because
the commands are very similar, they are all performed by the executive routine BACHEXT which
receives as input details for performing the command.

BACHMOD, BACHENT, and BACHREL are executive routines invoked via the USING
keyword in the relevant EXTRACT command. Each executive called this way is then responsible
for collecting the data extracted from the import file and processing it for the subsequent reconcile
stage.

BACHMOD assembles the model, BACHENT assembles the entities, and BACHREL assembles
the relationships. BACHREL assembles data from two EXTRACT commands, as it must combine
partnership and partnership-set data.

The data must be structured in such a way that it can be recognized by the subsequent reconcile
stage.

The executive routines used in the extract stage of import from the example are described in the
following sections.

BACHMAN

BACHEXT

EXTRACT USING BACHMOD
Model

EXTRACT USING BACHENT
Entities

EXTRACT (without USING)

EXTRACT USING BACHREL
Relationships
135

ASG-DictionaryManager User’s Guide
Extract Executive Routines

Coding Style
Throughout the example, these coding standards apply:

• Comments heading main sections are placed between dashed lines.

• Blocks of processing are indented by two characters for each successive level of nesting.

• Alignment and white space in groups of similar lines within logical blocks is designed to
highlight similarity of coding between the lines.

• Wherever possible typing is structured to ease the addition of new but similar lines.

• Calls to Manager Products commands and other executives are prefixed by the directive
MPR.

• Literal delimiters (the colon character) are used to prevent inadvertent variable substitution.

Data Structuring using VECTORS
Groups of variable arrays often need to be considered together as part of one larger structure. For
example, extracted object names are stored in the variable array EXT_OBJ_NAME while the
corresponding types are stored in the array EXT_OBJ_TYPE.

The first element of EXT_OBJ_NAME (the name of the first extracted object), is related to the
first element of EXT_OBJ_TYPE (the type of the first extracted object). In general, the ith object
has its attributes stored in the ith elements of several arrays.

It is useful to group these related arrays (EXT_OBJ_NAME, EXT_OBJ_TYPE, and others, in this
example), so that they can be treated as parts of one larger aggregate.

This grouping is achieved by defining a new variable array called a vector. The elements of a
vector contain the names of the variable arrays which are to be grouped together. The order of the
grouping, if it is significant, is reflected in the ordering of the names stored in the vector.

Thus, suppose you are storing three attributes for each extracted object; the name in
EXT_OBJ_NAME, the type in EXT_OBJ_TYPE, and the generate option (whether to generate a
proposed member for import) in DMR_MEM_GEN.

To treat the three variable arrays as an aggregate, set up a vector (called
BACHMAN_OBJ_VECTOR here, but it can have any name), containing:

• EXT_OBJ_NAME as element 1

• EXT_OBJ_TYPE as element 2

• DMR_MEM_GEN as element 3

This is shown in Figure 11 on page 137.
136

Appendix B - Importing an Entity-relational Model
Figure 11. Vector Example

BACHMAN_OBJ_VECTOR is now treated as a single aggregate.

First, you can display it as an aggregate in a tabular manner by using the COMMAND member
MPDYDISVCT, to show the inter-relationships of the constituent arrays. Each row of the display
corresponds to all the values of a particular extracted object—the ith row reflects the ith
extracted object. This is easier to analyze than output from the VLIST directive.

Second, you can set up processing loops more easily and ensure that uniform treatment is applied
to all variables in the vector. For example, you declare all variables as command variables by
setting up a loop to do the declarations (thus removing a common cause of errors). Also, if you
need to add variables to the vector, you need do it in only one place. ASG uses the INTERPRET
directive to execute the DROP and COMMAND directives on variables whose names are not
needed.

Third, you can exploit other COMMAND members which operate on vectors. The BACHMAN
executive uses MPDYVCTDIR to declare as global all command variables in the vector
BACHMAN_OBJ_VECTOR.

The objects represented by the vector can and do have different attributes represented by different
variables contained in the vector. Thus, an entity will have a minvol attribute while a relationship
will have a primary and inverse verb. That presents no problem; for the entity, merely leave as null
the array elements which do not form part of it.

This is illustrated in Figure 12 on page 138.

EXT_OBJ_NAME EXT_OBJ_TYPE DMR_MEM_GEN

(1) (2) (3)

(1)

(2)

(i)

Handy Hardware

Product

Supplier

...

...

Entity model

Entity

Entity

...

...

'gen'

...

...

'gen'

'gen'

vector—BACHMAN_OBJ_VECTOR

first object

second object

ith object
137

ASG-DictionaryManager User’s Guide
Figure 12

BACHMAN
This is the top-level executive routine that controls the entire extract stage.

It declares the vector BACHMAN_OBJ_VECTOR that is used in several parts of the extract
stage. It then sets up parameters and calls the executive BACHEXT to extract from the external
file. Four calls are made to BACHEXT, one for each main section of the import file.

When all extracting is complete, the extract vector BACHMAN_OBJ_VECTOR and its contained
variable arrays are redeclared as global (without altering contents of variables) to make these
arrays available to the reconcile stage.

The messages DM05702I and DM05703I are then issued to indicate what was extracted.

Finally, there is a section which will display the BACHMAN_OBJ_VECTOR for debugging
purposes. It needs to be enabled as indicated in the code to be activated. You are encouraged to do
so in order to see what a vector display looks like.

BACHEXT
This routine issues four EXTRACT commands, differing according to the input parameters start,
genspec, and using. After the extract it returns control to the routine that called it (BACHMAN).

The ddname for the external file is fixed as DD1, so you must have a job-control card with ddname
DD1 which identifies the Bachman Analyst export file.

There is debugging code in this executive which you are encouraged to activate as indicated in the
source code. When you do this, you will get a vector display of the data extracted during the
current invocation of the routine. (This is not the same as the consolidated extract data defined in
BACHMAN_OBJ_VECTOR).

Notice how the vector MPGEN_VECTOR is set up. Since the input parameter genspec contains
the names of the variables to be extracted with the EXTRACT command, this information is used
to set up MPGEN_VECTOR.

First we break down genspec into its constituent words (the names of the extract variables) using
PARSE VALUE genspec WITH genword():

EXT_OBJ_TYPE MINIVOL VERB1

Entity

Relationship

etc...

Entity

VERB2

30

null

100

null

null

sells

null

null

sold by
138

Appendix B - Importing an Entity-relational Model
so if genspec contains:

'e_entitykey e_name e_minvol etc'

genword will contain (in its elements):

e_entitykey
.
.
.
.
e_name
e_minvol
etc.

(Remember, the periods were used to denote fieldsnot to be extracted by the EXTRACT
command).

Second, remove the periods via another EXTRACT command, specifying a SKIPR parameter to
ignore array elements which contain periods. The result is placed in MPGEN_VECTOR which
will now contain the names of the command variables used in the EXTRACT command issued
previously, with no intervening periods.

The vector MPGEN_VECTOR can now be displayed using the COMMAND member
MPDYDISVCT.

BACHMOD, BACHENT, BACHREL
These executives are called through the USING clause of the EXTRACT command.

Each is responsible for transferring data extracted by the EXTRACT command and placing it in
the consolidated object structure represented by the vector BACHMAN_OBJ_VECTOR.
Additional chaining data must also be set up for the subsequent reconcile stage.

BACHMOD and BACHENT are relatively simple as each extracted object maps directly into one
consolidated object.

BACHREL is more complex, because it must combine data from two EXTRACT commands. One
set contains partnership data and the other set contains partnership-set data. These are combined
into relationships in what constitutes the core of the mapping or transformation from the Bachman
to the Manager Products models.

The Reconcile Stage

Introduction
When the Extract stage is complete, the RECONCILE command accesses the extracted data and
performs additional processing to propose member names and member types.
139

ASG-DictionaryManager User’s Guide
The user-written reconcile executive BACHREC is used for this. The executive is called
repeatedly, once for each extracted object which is to be proposed as a member for the repository.

Starting the Reconciliation
The reconciliation stage is started by issuing the following RECONCILE command:

RECONCILE INITIALISE USING BACHREC;

BACHREC, the executive routine invoked, is relatively simple. It performs some basic
name-editing to conform to Manager Products repository rules. Notice the call to the
name-reduction function REDUCE. To ensure that the proposed member name will not exceed the
permitted 32-character limit after the two-character member-type prefix is added, limit the name
to 29 characters. The SUBSTR function is then used to ignore the first three characters returned by
REDUCE (which contain a return code value) and the STRIP command is used to strip off trailing
blanks.

The executive then examines the type of object for which it has been invoked. Remember, it is
invoked repeatedly for every object extracted.

Based on the object type (which can be a model, an entity, or a relationship), it proposes an
appropriate member name and member type.

The strategy for proposing relationship names has been kept deliberately simple. In practice,
reconciling relationships can get complex depending on the type of reconciliation desired. Using a
simple name will not, in general, reveal the existence of an already existing (but differently
named) relationship linking the same two entities in the repository.

The strategy adopted in this example, however, should ensure uniqueness within the scope of one
enterprise model.

The Preview Stage

Introduction
For the purposes of this example, assume that output is to be displayed only on the screen, from
which you can populate the repository directly. This is about the generation of the data definition
statements from the data extracted and processed so far.

To start the preview stage, calling the preview executive routine BACHPREV, enter:

PREVIEW IMPORT USING BACHPREV;

Note:
If you attempt to import the model again, you will get different results during the reconcile stage,
since it will find the members proposed for import already in the repository.

An overview of the modular structure of the Preview stage is shown in Figure 13 on page 141.
140

Appendix B - Importing an Entity-relational Model
Figure 13

o is the object number passed as a parameter.

Preview Executive Routines

BACHPREV
This routine receives control when you issue the PREVIEW IMPORT command as shown.

The BACHPREV routine is responsible for identifying the type of the object represented by the
parameter passed to it. It then branches to the appropriate preview executive as shown in the
diagram, passing on the object number as a parameter.

BACHPREV is called once for each proposed object. This makes writing the routine easier; all
loop-control functions are taken care of by generic import functions.

BACHPRMOD
This routine is responsible for generating the command- and member-definition statement for the
model as a whole. Remember, the input parameter passed to it is the number of the object, and this
is used as an index to the variable arrays resulting from the previous import stages.

The WRITEF directive is used to generate the output. You need not concern yourself with the
destination of the output (that is, whether output has been directed to the screen, a user member, or
some other external dataset). That is taken care of by the PREVIEW command and any optional
ONTO clause you specify.

The repository update command, the proposed member name, and the member type are generated
first. Note the variable names which contain these values. They will have been set up by the
previous reconcile stage.

PREVIEW IMPORT USING BACHPREV

BACHPREV BACHPRMOD

BACHPRENT

BACHPRREL

Model

Entity

Relationship

'o'

'o'

'o'

'o'
141

ASG-DictionaryManager User’s Guide
The corporate executive routine MPDYMMLOCC is called to generate the common clauses.
Existing common clauses may have been extracted for members already in the repository, and
these will be preserved. The parameters passed to MPDYMMLOCC are:

• The object number

• An alias type of SHORT-NAME to indicate that we wish to add a new alias of that type to
any existing aliases (if the proposed member already existed in the repository)

Next, the SEE clause is generated by following the parent-child chain which was set up during the
extract stage (by the extract executive BACHMOD).

Finally, the terminator—a single semicolon—is generated.

BACHPRENT
This generates the definition for the ENTITY member type. It is very simple, and uses the values
of the entity attributes that have been extracted to generate the member clauses.

BACHPRREL
This generates the definition for the BUSINESS-RELATIONSHIP member type. It too is simple
as most of the complex model mapping will have been completed during the extract stage.

The names of the source and target entities are derived by using the pointer variables
EXT_OBJ_REL_SRC_ENT_PTR and EXT_OBJ_REL_TRG_ENT_PTR.

The pointers are used as index values into the array DMR_MEM_NAME which contains the
repository member names for the entities.

The Populate Stage

Introduction
After completing preview, the repository is populated by entering:

POPULATE FROM BUFFER ROLLBACK;

The ROLLBACK option is not mandatory but is advisable. It causes the populate stage to be
treated as a single logical unit of work (LUW). If any errors occur during this stage, the LUW is
rolled back as one unit, leaving the repository unchanged. If errors do occur, it is much easier to
examine the preview output and determine the cause of errors before a second attempt at
populating, without having to remove partial updates to the repository.

Validating the Model
Finally, because an entity-relationship model is subject to additional constraints imposed by the
repository schema, you should validate the model using the VALIDATE command.
142

Appendix B - Importing an Entity-relational Model
First, collect together (in a KEPT-DATA list) all the entities and business-relationships which
constitute the model by interrogating on the constituents of the model. (You can now see the
usefulness of the GROUP member also imported):

KEEP WHICH MEMBERS CONSTITUTE EM-HANDY-HARDWARE-COMPANY VIA SEE
DIRECTLY;

You can confirm that the members in the list need validating by using the commands:

SET CHECK-CHAR ?;

LIST KEPT-DATA;

The first command sets the question mark as an indicator character that shows up on the member
list (displayed by the second command). Each member entry will contain a question mark as the
last character under the Condition heading.

Next, perform validation on the members in the list with:

PERFORM ’VALIDATE MEMBER "*"’ KEPT-DATA;

This will validate all entities and business-relationships leaving you with a complete, validated
model in the repository.
143

ASG-DictionaryManager User’s Guide
Listings of Executive Routines

BACHMAN

mpxx literal=:
/*--
/* BACHMAN - Top-level executive for EXTRACT phase of Bachman
/* GENERIC IMPORT EXAMPLE
/*
/* NOTE - A valid JOB-CONTROL statement must be active to associate
/* the external dataset with the ddname ’DD1’.
/*--
/*--
/* Define a command variable which refers to a group of related
/* command variables. We call such a command variable a VECTOR.
/*
/* It can be thought of as a ’handle’ to the related set of
/* command variables. It provides useful capabilities exploited
/* in this executive, such as:
/* a) a quick way to make extracted command variables global.
/* b) a powerful display capability (useful when debugging).
/* Related sets of variables are grouped together
/* in the display to show them as rows in a table.
/* Such example code is included but disabled.
/*--

drop bachman_obj_vector /* empty first
command bachman_obj_vector /* then redeclare

/*--
/* Common attributes for all objects:
/*--
bachman_obj_vector(1) = :ext_obj_key:

bachman_obj_vector(2) = :ext_obj_name:
bachman_obj_vector(3) = :ext_obj_type:
bachman_obj_vector(4) = :dmr_mem_gen:
bachman_obj_vector(5) = :ext_obj_chain:
bachman_obj_vector(6) = :ext_obj_chain_end:
bachman_obj_vector(7) = :ext_obj_parent_pointer:
bachman_obj_vector(8) = :ext_obj_id:
bachman_obj_vector(9) = :dmr_mem_desc:
bachman_obj_vector(10) = :ext_save_gen:

/*--
/* (No Enterprise model attributes),
/* Entity attributes:
/*--

bachman_obj_vector(11) = :ext_obj_ent_minvol:
bachman_obj_vector(12) = :ext_obj_ent_maxvol:
bachman_obj_vector(13) = :ext_obj_ent_expvol:
bachman_obj_vector(14) = :ext_obj_ent_grwpct:
bachman_obj_vector(15) = :ext_obj_ent_gptu:
bachman_obj_vector(16) = :ext_obj_ent_normlvl:
bachman_obj_vector(17) = :ext_obj_ent_normok:
144

Appendix B - Importing an Entity-relational Model
/*--
/* Relationship attributes:
/*--

bachman_obj_vector(18) = :ext_obj_rel_src_ent_ptr: /* source
bachman_obj_vector(19) = :ext_obj_rel_src_min_card:
bachman_obj_vector(20) = :ext_obj_rel_src_max_card:
bachman_obj_vector(21) = :ext_obj_rel_src_med_card:
bachman_obj_vector(22) = :ext_obj_rel_src_mandatory:
bachman_obj_vector(23) = :ext_obj_rel_inv_verb:
bachman_obj_vector(24) = :ext_obj_rel_trg_ent_ptr: /* target
bachman_obj_vector(25) = :ext_obj_rel_trg_min_card:
bachman_obj_vector(26) = :ext_obj_rel_trg_max_card:
bachman_obj_vector(27) = :ext_obj_rel_trg_med_card:
bachman_obj_vector(28) = :ext_obj_rel_trg_mandatory:
bachman_obj_vector(29) = :ext_obj_rel_fwd_verb:

/*--
/* Declare the ’vectored’ variables as command:
/*--
do bachman_obj_vector()

i = FDO(:DARRAY:)
interpret :drop :bachman_obj_vector(i) /* ’empty’ first
interpret :command :bachman_obj_vector(i) /* then declare

end
/*--
/* Extract parameters for enterprise model data:
/*--

local start genspec using
start = :**ENTERPRISE_MODEL**: /* STARTA parm
genspec = : em_enterprise_modelke: /* GENERATE parm
genspec = genspec: .: /* createdby - ignored
genspec = genspec: .: /* createdtime - ignored
genspec = genspec: .: /* modifiedby - ignored
genspec = genspec: .: /* modifiedtime - ignored
genspec = genspec: em_name:
using = :BACHMOD: /* USING parm
MPR :BACHEXT ’:start:’ ’:genspec:’ :using ;

/*--
/* Extract entity data:
/*--

start = :**ENTITY**: /* STARTA parm
genspec = : e_entitykey: /* GENERATE parm
genspec = genspec: .: /* createdby - ignored
genspec = genspec: .: /* createdtime - ignored
genspec = genspec: .: /* modifiedby - ignored
genspec = genspec: .: /* modifiedtime - ignored
genspec = genspec: e_name:
genspec = genspec: e_minvol:
genspec = genspec: e_maxvol:
genspec = genspec: e_expvol:
genspec = genspec: e_grwpct:
genspec = genspec: e_gptu:
145

ASG-DictionaryManager User’s Guide
genspec = genspec: e_normlvl:
genspec = genspec: e_normok:

/* rest - ignored
using = :BACHENT: /* USING parm
MPR :BACHEXT ’:start:’ ’:genspec:’ :using ;

/*--
/* Extract PARTNERSHIP data:
/*--

start = :**PARTNERSHIP**: /* STARTA parm
genspec = : p_partnershipkey: /* GENERATE parm
genspec = genspec: .: /* createdby - ignored
genspec = genspec: .: /* createdtime - ignored
genspec = genspec: .: /* modifiedby - ignored
genspec = genspec: .: /* modifiedtime - ignored
genspec = genspec: p_partnership_set:
genspec = genspec: p_partnership_set2:
genspec = genspec: p_min1vol:
genspec = genspec: p_max1vol:
genspec = genspec: p_min2vol:
genspec = genspec: p_max2vol:
MPR :BACHEXT ’:start:’ ’:genspec:’ ;: /* NOTE - no USING exec

/*--
/* Extract PARTNERSHIP_SET data:
/*--

start = :**PARTNERSHIP_SET**: /* STARTA parm
genspec = : ps_partnership_setkey: /* GENERATE parm
genspec = genspec: .: /* createdby - ignored
genspec = genspec: .: /* createdtime - ignored
genspec = genspec: .: /* modifiedby - ignored
genspec = genspec: .: /* modifiedtime - ignored
genspec = genspec: ps_entity:
genspec = genspec: ps_name:
genspec = genspec: ps_minvol:
genspec = genspec: ps_maxvol:
genspec = genspec: ps_expvol:

/* rest - ignored
using = :BACHREL: /* USING parm
MPR :BACHEXT ’:start:’ ’:genspec:’ :using ;

/*--
/* Save dmr_mem_gen in ext_save_gen:
/* (This permits subsequent RECONCILE INIT commands to restore
/* extracted data without having to re-Extract).
/*--

ext_save_gen() = dmr_mem_gen
/*--
/* Make bachman_obj_vector and all variables in it, global:
/*--

global bachman_obj_vector
MPR :MPDYVCTDIR global bachman_obj_vector ;:

/*--
/* Display informatory messages of objects Extracted:
146

Appendix B - Importing an Entity-relational Model
/*--
local tot o /* object number

tot = ARRAYHI(:ext_obj_name:) /* total objects
MESSAGE 5702 :I: ’’ tot :EXTERNAL-FILE:

do ext_obj_name() /* for all objects extracted
o = FDO(:DARRAY:)
MESSAGE 5703 :I: ’’ ext_obj_type(o) ext_obj_name(o)

end
/*--
/* Exit:
/*--

exit00
exit 0 /* comment out this line to get diagnostics that follow

/*--
/* Debug -
/* Display the objects - each (extracted) object is represented by
/* one row in the table representing the vector:
/*
/* MPDYDISVCT is the ’display vector’ facility. It takes the
/* following parameters:
/* - the name of the VECTOR to be displayed
/* - the number of rows to display
/* - the number of characters which form the common
/* prefix to the vectored variables. Set this to zero
/*--

local rows
rows = ARRAYHI(:ext_obj_type:)
MPR :MPDYDISVCT bachman_obj_vector: rows 0;
147

ASG-DictionaryManager User’s Guide
BACHEXT

mpxx literal=:
/*--
/* BACHEXT - Extract from file for Bachman example:
/*--/
*--
/* Locals:
/*--

local start genspec
/*--
/* Input parms:
/*--

parse arg start genspec using

start = STRIP(start,:B:,:’:)
genspec = STRIP(genspec,:B:,:’:)
using = UPPER(using)

/* if using ne :: then using = :USING ’:UPPER(using):’:
/*--
/* Extract Entities:
/*--

MPR : EXTRACT EXTERNAL DD1 :
MPR : SEPARATOR ’,’ :
MPR : GEN ’:genspec:’ :
MPR : STARTA POS 1 ’:start:’ :
MPR : ENDF POS 1 ’**’ :

if using ne :: then MPR : USING ’:using:’ :
MPR :;:

exit 0 /* comment out this line to get diagnostics that follow
/*--
/* Set up display vector mpgen_vector, containing names of variables
/* extracted but ommitting periods (.):
/*--

drop genword mpgen_vector
command genword mpgen_vector

/*--
/* Set up genword with everything in genspec (including periods):
/*--

PARSE VALUE genspec WITH genword()
/*--
/* Use EXTRACT to set up mpgen_vector without periods:
/*--

MPR : EXTRACT VARIABLE GENWORD ALL:
MPR : GENERATE ’mpgen_vector’:
MPR : SKIPA ’.’ :
MPR :;:

/*--
/* Display results:
148

Appendix B - Importing an Entity-relational Model
/*--
local rows
rows = ARRAYHI(mpgen_vector)
MPR :MPDYDISVCT mpgen_vector: rows 0;

BACHMOD

mpxx literal=:
/*--
/* BACHMOD - Build ENTERPRISE MODEL object from extracted Bachman
data:
/*--
/*--
/* Declare locals:
/*--

local o /* object index
local em /* enterprise model index

/*--
/* Populate the EXTRACT variables:
/*--

o = ARRAYHI(:ext_obj_name:) /* last object slot

do em_enterprise_modelke()
o = o+1 /* next object slot
em = FDO(:DARRAY:) /* current ent model

/*--
/* Set extracted object attributes (o) from entity_model (em):
/*--

ext_obj_key(o) = em_enterprise_modelke(em) /* object key
ext_obj_name(o) = em_name(em) /* object name
ext_obj_type(o) = :ENTITYMODEL: /* object type
dmr_mem_gen(o) = :GEN: /* generate member
ext_obj_id(o) = em_name(em) /* object name

/*--
/* (No chaining needed since enterprise model is at head of chain)
/*--

end

/*--
/* Set ext_object_id as a global for RECONCILE header:
/*
/* Reconciliation summary report
/* for extract of MODEL ’<name>’ from EXTERNAL-FILE.
/* -------------
/* --->ext_object_id<---
/*--

global ext_object_id
ext_object_id = :MODEL ’:em_name(1):’:

exit 0
149

ASG-DictionaryManager User’s Guide
BACHENT

mpxx literal=:
/*--
/* BACHENT - Build ENTITY objects from extracted Bachman entity:
/*--
/*--
/* Declare locals:
/*--

local o /* object index
local e /* entity index

/*--
/* Populate the EXTRACT variables:
/*--

o = ARRAYHI(:ext_obj_name:) /* last object slot
do e_entitykey()

o = o+1 /* next object slot
e = FDO(:DARRAY:) /* current entity

/*--
/* Set common object attributes (o) from entity (e):
/*--

ext_obj_key(o) = e_entitykey(e) /* object key
ext_obj_name(o) = e_name(e) /* object name
ext_obj_type(o) = :ENTITY: /* object type
dmr_mem_gen(o) = :GEN: /* generate member
ext_obj_id(o) = e_name(e) /* object name

/*--
/* Adjust chaining of object (o) to enterprise model (1):
/*--

ext_obj_chain(o-1) = o /* previous obj to current
ext_obj_chain_end(1) = o /* chain end to current
ext_obj_parent_pointer(o) = 1 /* current to parent

/*--
/* Extracted attributes:
/*--

ext_obj_ent_minvol(o) = e_minvol(e)
ext_obj_ent_maxvol(o) = e_maxvol(e)
ext_obj_ent_expvol(o) = e_expvol(e)
ext_obj_ent_grwpct(o) = e_grwpct(e)
ext_obj_ent_gptu(o) = e_gptu(e)
ext_obj_ent_normlvl(o) = e_normlvl(e)
ext_obj_ent_normok(o) = e_normok(e)

end
exit 0
150

Appendix B - Importing an Entity-relational Model
BACHREL

mpxx literal=:
/*--
/* BACHPRREL - PREVIEW executive for Bachman RELATIONSHIP:
/*--

local o /* object number
parse arg o /* get object number

/*--
/* Repository update function, member name, member type:
/*--

WRITEF dmr_mem_func(o) dmr_mem_name(o) ;
WRITEF dmr_mem_type(o)

/*--
/* Common clauses (alias type is ’SHORT’):
/*--

MPR :MPDYMMLOCC :o: SHORT ;:
/*--
/* Relationship clauses:
/*--

local src trg
src = ext_obj_rel_src_ent_ptr(o)
trg = ext_obj_rel_trg_ent_ptr(o)
WRITEF :SOURCE :dmr_mem_name(src)
WRITEF :FORWARD-VERB ":ext_obj_rel_fwd_verb(o):":
WRITEF :SOURCE-MANDATORY :ext_obj_rel_src_mandatory(o)
WRITEF :SOURCE-MAXIMUM-CARDINALITY

":ext_obj_rel_src_max_card(o):":
WRITEF :SOURCE-MINIMUM-CARDINALITY :ext_obj_rel_src_min_card(o)
WRITEF :SOURCE-MEDIAN-CARDINALITY :ext_obj_rel_src_med_card(o)
WRITEF :TARGET :dmr_mem_name(trg)
WRITEF :INVERSE-VERB ":ext_obj_rel_inv_verb(o):":
WRITEF :TARGET-MANDATORY :ext_obj_rel_trg_mandatory(o)
WRITEF :TARGET-MAXIMUM-CARDINALITY

":ext_obj_rel_trg_max_card(o):":
WRITEF :TARGET-MINIMUM-CARDINALITY :ext_obj_rel_trg_min_card(o)
WRITEF :TARGET-MEDIAN-CARDINALITY :ext_obj_rel_trg_med_card(o)

/*--
/* Terminator:
/*--

WRITEF;
151

ASG-DictionaryManager User’s Guide
BACHREC

mpxx literal=:
/*--
/* BACHREC - Reconcile executive for Bachman Import example:
/*--

local o /* object number
local name /* used for name editing
parse arg o /* get object number

/*--
/* Common name editing:
/*--

name = UPPER(ext_obj_name(o))
name = TRANSLAT(name,:--:,: _:)
name = REDUCE(name,29,:-:)
name = SUBSTR(name,4)
name = STRIP(name)

/*--
/* Check object type and take appropriate action:
/*--

if ext_obj_type(o) eq :ENTITYMODEL: then goto entitymodel
if ext_obj_type(o) eq :ENTITY: then goto entity
if ext_obj_type(o) eq :RELATIONSHIP: then goto relationship
exit 8 /* can’t happen!

/*--
/* Reconciliation for ENTITY MODEL:
/*--

-entitymodel
dmr_mem_name(o) = :EM-:name
dmr_mem_type(o) = :GROUP: /* not rigorous but convenient... */
goto exit00

/*--
/* Reconciliation for ENTITY:
/*--

-entity
dmr_mem_name(o) = :EN-:name
dmr_mem_type(o) = :ENTITY:
goto exit00

/*--
/* Reconciliation for RELATIONSHIP:
/*--

-relationship
dmr_mem_name(o) = :RL-:ext_obj_key(1):-:name
dmr_mem_type(o) = :BUSINESS-RELATIONSHIP:
goto exit00

/*--
/* Exit:
/*--

-exit00
exit 0
152

Appendix B - Importing an Entity-relational Model
BACHPREV

mpxx literal=:
/*--
/* BACHPREV - PREVIEW executive for Bachman Import example:
/*--

local o /* object number
parse arg o /* get object number

/*--
/* Check object type and take appropriate action:
/*--

if ext_obj_type(o) eq :ENTITYMODEL: then MPR :BACHPRMOD :o ;
if ext_obj_type(o) eq :ENTITY: then MPR :BACHPRENT :o ;
if ext_obj_type(o) eq :RELATIONSHIP: then MPR :BACHPRREL :o ;
153

ASG-DictionaryManager User’s Guide
BACHPRMOD

mpxx literal=:
/*--
/* BACHPRMOD - PREVIEW executive for Bachman MODEL:
/*--

local o /* object number
parse arg o /* get object number

/*--
/* Repository update function, member name, member type:
/*--

WRITEF dmr_mem_func(o) dmr_mem_name(o) ;
WRITEF dmr_mem_type(o)

/*--
/* Common clauses (alias type is ’SHORT’):
/*--

MPR :MPDYMMLOCC :o: SHORT ;:
/*--
/* CONTAINS clause:
/* (SEE clause for now):
/*--

local c x /* chained objects
c = 1 /* first child
x = : : /* separator
if TYPE(ext_obj_chain(c)) eq :N: then -

WRITEF :SEE:
do while TYPE(ext_obj_chain(c)) eq :N:

local ch /* child object
ch = ext_obj_chain(c) /* child number
WRITEF : :x°°dmr_mem_name(ch) /* output child name
x = :,: /* update separator
c = ext_obj_chain(c) /* next child in chain

end
/*--
/* Terminator:
/*--

WRITEF;
154

Appendix B - Importing an Entity-relational Model
BACHPRENT

mpxx literal=:
/*--
/* BACHPRENT - PREVIEW executive for Bachman ENTITY:
/*--

local o /* object number
parse arg o /* get object number

/*--
/* Repository update function, member name, member type:
/*--

WRITEF dmr_mem_func(o) dmr_mem_name(o) ;
WRITEF dmr_mem_type(o)

/*--
/* Common clauses (alias type is ’SHORT’):
/*--

MPR :MPDYMMLOCC :o: SHORT ;:
/*--
/* Entity clauses:
/*--

WRITEF :MINIMUM-OCCURRENCE :ext_obj_ent_minvol(o)
WRITEF :MAXIMUM-OCCURRENCE :ext_obj_ent_maxvol(o)
WRITEF :OCCURRENCE :ext_obj_ent_expvol(o)
WRITEF :GROWTH-RATE-PERIOD ":ext_obj_ent_gptu(o):":
WRITEF :GROWTH-RATE-PERCENT :ext_obj_ent_grwpct(o)

/*--
/* Terminator:
/*--

WRITEF;
155

ASG-DictionaryManager User’s Guide
BACHPRREL

mpxx literal=:
/*--
/* Adjust chaining of object (o) to enterprise model (1):
/*--

ext_obj_chain(o-1) = o /* previous obj to current
ext_obj_chain_end(1) = o /* chain end to current
ext_obj_parent_pointer(o) = 1 /* current to parent

/*--
/* Combine partnership (p) data with partnership sets:
/*
/* 1. Get 2 partnership_set keys from partnership (p):
/*--

ps_key1 = p_partnership_set(p) /* key of partnership_set1
ps_key2 = p_partnership_set2(p) /* key of partnership_set2

/*--
/* 2. Convert keys to partnership_set indeces by searching keys:
/*--

ps1 = SEARCH(:ps_partnership_setkey:,ps_key1,,,:M:)
ps2 = SEARCH(:ps_partnership_setkey:,ps_key2,,,:M:)

/*--
/* 3. Relationship attributes for relationship (o). This is the
/* core of the model-mapping transform.
/*--

local mand1 mand2
mand1 = :M: /* Mandatory

if p_min1vol(p) eq 0 then mand1 = :O: /* or Optional
mand2 = :M: /* and again

if p_min2vol(p) eq 0 then mand2 = :O:
ext_obj_rel_fwd_verb(o) = ps_name(ps1)
ext_obj_rel_inv_verb(o) = ps_name(ps2)
ext_obj_rel_src_min_card(o) = ps_minvol(ps2) /* invert!
ext_obj_rel_trg_min_card(o) = ps_minvol(ps1)
ext_obj_rel_src_max_card(o) = ps_maxvol(ps2) /* here too...
ext_obj_rel_trg_max_card(o) = ps_maxvol(ps1)
ext_obj_rel_src_med_card(o) = ps_expvol(ps2) /* here too...
ext_obj_rel_trg_med_card(o) = ps_expvol(ps1)
ext_obj_rel_src_mandatory(o) = mand1
ext_obj_rel_trg_mandatory(o) = mand2

/*--
/* Note - if MINIMUM/MEDIAN cardinality is zero, we override with
/* a value of 1 to conform to ASG model.
/*--

if ext_obj_rel_src_min_card(o) eq 0 then -
ext_obj_rel_src_min_card(o) = 1

if ext_obj_rel_trg_min_card(o) eq 0 then -
ext_obj_rel_trg_min_card(o) = 1

if ext_obj_rel_src_med_card(o) eq 0 then -
ext_obj_rel_src_med_card(o) = 1

if ext_obj_rel_trg_med_card(o) eq 0 then -
156

Appendix B - Importing an Entity-relational Model
ext_obj_rel_trg_med_card(o) = 1
/*--
/* Related entities for extracted partnership (p):
/* 1. Get 2 entity keys from partnership_set indeces (ps1,ps2):
/*--

e_key1 = ps_entity(ps1)
e_key2 = ps_entity(ps2)

/*--
/* 2. Convert keys to entity object indeces by searching for entity
/* keys in ext_obj_key array:
/*--

e1 = SEARCH(:ext_obj_key:,e_key1,,,:M:)
e2 = SEARCH(:ext_obj_key:,e_key2,,,:M:)

/*--
/* 3. Entity object indexes for extracted relationship (o):
/*--

ext_obj_rel_src_ent_ptr(o) = e1 /* source entity ptr
ext_obj_rel_trg_ent_ptr(o) = e2 /* target entity ptr

end
exit 0

The Imported Model

A diagram of the complete entity-relationship model imported is shown in Figure 14 on page 158.

The numbers refer to the keys of the object as defined in the Bachman export file.

Each rounded box represents an entity imported as a member of type ENTITY and each diamond
represents a relationship imported as a member of type BUSINESS-RELATIONSHIP.

The complete model is grouped together in the SEE clause of a member of type GROUP for
interrogation purposes.
157

ASG-DictionaryManager User’s Guide
Figure 14. Diagram of the Imported Model

109 95 100 90

Product

Be acquired in Be delivered in Be sold in Be offered in

Purchase Delivery Sale Item Product
Order Quote

Be acquiring Consists of Be selling Be offering

133 114

Be satisfied
by

Be in
satisfaction
of

Be part of

Credit Card
Claim

1399Be for Sale 1399

Be provided
by

128 SupplierBe sent to Be receiver of

Be part of

Contain

Be provider of

Sale Number
Counter
158

Index
C
commands 67

D
data analysis 5

E
examples of generic import 103
executive routines

extract 43
preview 52
reconcile 50

extract
executive routines

dedicated arrays 45
dedicated elements 45
description 43
introduction 5
moving stored information 44
organizing information on the

WBTA 45
introduction 5
mandatory variables 44
parent-children relationships 46

example 47
parents, children, and referenced

objects 46
repeating attributes 48
storing information 43
user-defined variables

description 48
introduction 44

EXTRACT command 70
syntax 77

F
format lines

common to ASG-supplied member
types 53

for ENTITY/USERVIEW/VIEWSET
member types 64

for FILE member type 59
for GROUP member type 58
for ITEM member types 56
for MODULE/PROGRAM/SYSTEM

member types 62
grouping 16
in TRANSLATION-RULEs 14
use 14

formatting characters
character strings 12
list of 11
overview 11

G
generic import

BACHMAN example 131
executive routines 144
extract executive routines 136
extract stage 134
imported model 157
introduction 131
mapping onto the

repository 134
populate stage 142
preview executive routines 141
preview stage 140
reconcile stage 139
the import file 131

COBOL example
extract stage 103
introduction 103
listings stage 108
populate stage 107
preview stage 105
reconcile stage 104

generic import functions 3

I
import procedure

description 5
introduction 5
using 6
159

ASG-DictionaryManager User’s Guide

160
M
mandatory variables 51

P
parameter numbers 15

for non-repeating clauses 17
for repeating clauses 17
processing loops 19

populate 6
POPULATE command 79

syntax 80
preview 5

executive routines
description 52
introduction 6

PREVIEW IMPORT command 81
syntax 83

Q
QUERY and SET TRANSLATION 38

R
RADD command 84
reconcile

executive routines
description 50
introduction 6

introduction 5
tailoring common clauses 51

RECONCILE command 85
syntax 95

RIGN command 96
RREN command 97
RREP command 98
RUPD command 99

S
SET and QUERY TRANSLATION 38
system-generated variables 52

T
TRANSFER command 36, 102

PARTITIONED keyword 37
TRANSLATE command 34, 101

USING clause 36
TRANSLATION-RULE member type 67
TRANSLATION-RULE members

example 31
numbering system 9

TRANSLATIONRULE members
defining 7
U
user exit 22

V
variables 21

mandatory 46, 51
system-generated 52
user-defined 48

W
WBTA (Workbench Translation Area)

introduction 4

ASG Worldwide Headquarters Naples Florida USA I asg.com

	CD Contents
	Contents
	Index
	C
	D
	E
	F
	G
	I
	M
	P
	Q
	R
	S
	T
	U
	V
	W

	Publication Conventions
	ASG Support Numbers
	Business Hours Support
	Non-Business Hours - Emergency Support

	ASG Web Site
	Enhancement Fax Form
	Preface
	About this Publication

	Introduction to DictionaryManager
	Exporting Information
	Summary

	Importing Information
	Data Analysis
	The Import Procedure

	Translation Rules for Dictionary Members
	Introduction to Translation Rules
	How to Define TRANSLATION-RULEs
	Forming TRANSLATIONRULEs
	Format Lines and Parameter Numbers
	Translating Data from a Clause that Does Not Repeat
	Translating Data from a Clause that Repeats
	Using Variables

	An Example TRANSLATION-RULE

	Export to Another Dictionary
	Introduction
	How to Translate Members Using the Translation Rules
	Using the TRANSLATE Command
	The USING Clause in the TRANSLATE Command
	Use of KEEP-DATA Lists in the TRANSLATE Command

	How to TRANSFER Members
	Keywords PARTITIONED and SEQUENTIAL in the TRANSFER Command
	Use of the AS Clause in the TRANSFER Command

	SET and QUERY TRANSLATION
	SET and QUERY TRANSLATION for Base Member Types
	SET and QUERY TRANSLATION for UDS Member Types
	SET and QUERY TRANSLATION for Cullinet’s IDD

	Import Executive Routines and Variables
	Extract Executive Routines
	Introduction
	Storing Extracted Information
	How to Organize Information on the WBTA
	Mandatory Variables
	User-defined Variables

	Reconcile Executive Routines
	Introduction
	Tailoring Common Clauses
	Mandatory Variables

	Preview Executive Routines
	Introduction

	System-generated Variables

	Format Lines and Parameter Numbers
	Format Lines and Parameter Numbers Common to All Member Types
	Format Lines and Parameter Numbers for Basic Member Types
	For ITEM Members
	For GROUP Members
	For FILE Members
	For MODULE, PROGRAM, and SYSTEM Members

	Format Lines and Parameter Numbers for ASG-DesignManager Members

	Syntax of Commands and Member Types
	TRANSLATION-RULE Member Type
	EXTRACT Command
	Extracting from an External File
	Extracting from the Output of a Command
	Extracting from a Variable Array
	Storing Extracted Data in Specified Variable Arrays
	Specifying a Field Separator
	Storing Extracted Data in Specified Parts of Variables
	Extracting Selected Data
	Null Filling Elements of the Output Array
	Importing Empty or Blank Records
	Using an Executive Routine
	Syntax

	POPULATE Command
	Specifying that Statements will form a Logical Unit of Work
	Syntax

	PREVIEW IMPORT Command
	Generating Member Definition Statements in Your Own Layouts
	Filing Generated Output in a USER-MEMBER
	Syntax

	RADD
	Syntax (Line Command)
	Syntax (Primary Command)

	RECONCILE Command
	Regenerating Proposed Members
	Tailoring How Proposed Members are Generated
	Stopping Proposed Members being Entered in the Repository
	Adding Proposed Members
	Replacing Existing Members with Proposed Members
	Renaming Proposed Members
	Selecting Members to be Ignored, Added, or Replaced
	Excluding Common Clauses from the Definition of Proposed Members
	Specifying the Type of Reconciliation Report you want Displayed
	A Description of the Reconciliation Summary Report
	An Example of the Reconciliation Summary Report
	A Description of the Reconciliation Detailed Report
	An Example of the Reconciliation Detailed Report
	Syntax

	RIGN
	Syntax (Line Command)
	Syntax (Primary Command)

	RREN
	Syntax (Line Command)
	Syntax (Primary Command)

	RREP
	Syntax (Line Command)
	Syntax (Primary Command)

	RUPD
	Syntax (Line Command)
	Syntax (Primary Command)

	TRANSLATE Command
	TRANSFER Command

	Appendix A
	Introduction
	The Extract Stage
	The Reconcile Stage
	The Preview Stage
	The Populate Stage
	Executive Routine Listings
	UEXT001
	UEXT002
	UEXT003
	UEXT004
	UEXT005
	UEXT006
	UEXT007
	UREC001
	UPRE001

	The Example External File

	Appendix B
	Introduction
	The Import File
	The Enterprise Model
	The Entities
	The Partnerships
	The Partnerships Sets
	Mapping the Two Models

	The Extract Stage
	Introduction
	Processing Overview
	Extract Executive Routines

	The Reconcile Stage
	Introduction
	Starting the Reconciliation

	The Preview Stage
	Introduction
	Preview Executive Routines

	The Populate Stage
	Introduction
	Validating the Model

	Listings of Executive Routines
	BACHMAN
	BACHEXT
	BACHMOD
	BACHENT
	BACHREL
	BACHREC
	BACHPREV
	BACHPRMOD
	BACHPRENT
	BACHPRREL

	The Imported Model

	name:
	number:
	contact name:
	publication:
	product:
	version number:
	pub date:
	comments:

